
 July, 2016

VoiceGuide

User Guide

2

1. Introduction 1

Welcome To VoiceGuide 1

Which version to use 2

2. Configuration 3

System Requirements 3

Installing v7.x - VoIP (SIP) / HMP 5

Installing v7.x - Telephone lines/trunks 15

Installing v6.x - Telephone lines/trunks 18

Installing v5.x - TAPI devices 20

Installing v5.x - CAPI devices 23

Text To Speech 28

Call Transfers and Conferencing 31

Databases 36

End of Call Detection 40

Distinctive Ring Detection 47

Cisco Call Manager Configuration 50

T1/E1 ISDN Configuration 52

T1/E1 RobbedBit/CAS/R2 Configuration 60

VoIP Line Registration 63

Command Line Options 68

Registering VoiceGuide 69

Unique Identifier 71

3. Script Design 74

Introduction 74

Graphical Design Environment 75

Module Types 77

Paths 78

Result Variables 82

Call Start 89

Call Finish 91

Multilanguage Systems 93

Protected Scripts 95

Sound files 96

3

Testing Scripts 100

4. Modules 101

Play 101

Record 105

Get Numbers 109

Say Numbers 114

Send Email 116

Database Query 119

Run Program 126

Run VB Script 131

Call Web Service 148

Time Switch 156

Transfer Call 158

Evaluate Expression 166

Fax Send and Receive 178

Send Phone Message 180

Send Pager Message 183

Hangup Call 185

5. Reporting 187

Dashboards 187

REST API 188

Line Status Monitor 190

Automated Report Scheduling 191

6. Voicemail 192

Introduction 192

Voicemail System Manager 195

Voicemail Menus 200

Message Lamps 203

7. Outbound Dialing 205

Loading Numbers to Call 205

Detect Call Answer 216

Outbound VoIP calls 219

Predictive Dialers 221

External Database Source (v7) 222

8. CRM Integration 228

4

SugarCRM 228

9. Speech Recognition 232

Introduction 232

Install LumenVox 234

10. Logs 237

Script Logs 237

Call Detail Records (CDRs) 239

Temp Files 240

11. COM and WCF Interface 241

Admin_TraceLogAdd 241

Dialer_MakeCall 242

Dialer_OutDialQueAdd 243

Bridge_Connect 246

Bridge_Disconnect 247

Line_Hangup 248

Line_Pickup 249

Play_Start 250

Play_Stop 251

Record_Stop 252

Record_Start 253

Record_2Lines_Start 254

Run_ResultReturn 255

RvGet 256

RvGet_All 258

RvGet_AllXml 259

RvSet 260

RvSet_RvList 261

Script_Gosub 262

Script_Goto 263

Script_Return 264

Serial_Tx 265

Vm_Event 266

Vm_VmbConfig_Get 267

Vm_VmbConfig_Set 268

12. PBX Inband Signaling 269

5

Inband Signaling 269

Legal Information 273

Copyright & Disclaimer 273

1

Welcome To VoiceGuide

VoiceGuide was designed to allow fast and easy creation of Inbound and Outbound IVR and

Messaging systems which can be easily tailored to individual needs.

VoiceGuide's Graphical Script Designer contains a range of highly functional modules to allow rapid

creation and easy administration, and scripted Voicemail and ACD features facilitate a wide range of

Inbound/Outbound Self Service and Agent Assisted IVR solutions to be deployed.

Fully working evaluation version of the Voiceguide IVR software can be downloaded, allowing full

evaluation of the software before purchasing.

Free Support is provided on the public Support Forum which is monitored by our support staff.

2

Which version to use

Latest version of VoiceGuide is v7.x

VoiceGuide v7.x can use VoIP, and can control analog and T1/E1 ISDN trunks.

Table below lists some of the common devices used in IVR systems, the types of telephone lines

used with these devices, and the appropriate VoiceGuide version to use for each scenario:

Device Lines Used VoiceGuide Version

Dialogic cards Analog, T1/E1 ISDN
VoiceGuide v7 / v6 - select the "Dialogic cards"
option during install.

(none used) VoIP - SIP
VoiceGuide v7 - select the "VoIP/HMP" option
during install

Dialogic DNI/HMP cards T1/E1 ISDN
VoiceGuide v7 - select the "VoIP/HMP" option
during install

CAPI cards BRI ISDN VoiceGuide v5 (TAPI version)

Voice Modems Analog VoiceGuide v5 (TAPI version)

TAPI devices Various VoiceGuide v5 (TAPI version)

3

System Requirements

Minimum system requirements for running VoiceGuide are:

VoiceGuide v7:

Win2012, Win2008, Win10, Win8, Win7, Vista, Win2003_SP2, WinXP_SP3

.NET 4.0

Pentium 1GHz with 1GB RAM, or as per Windows min requirements

VoiceGuide v6:

Win2012, Win2008, Win10, Win8, Win7, Win2003, Win2000, WinXP

Pentium 1GHz with 512MB RAM or as per Windows min requirements

VoiceGuide v5:

Win2003, Win2000, WinXP, Win ME, Win 98, Win 95

Pentium 400MHz with 256MB RAM, or as per Windows min requirements

Hardware Requirements

VoiceGuide can be used with:

Dialogic cards

A range of cards is available including cards for use with traditional 'analog' telephone lines (eg:

D/4PCIUF), as well as cards for T1 and E1 based services. (D/240JCT, D/300JCT, etc.)

Please see: Installing with Dialogic.

VoIP

No hardware is required for VoIP (SIP) deployments. Dialogic HMP drivers are used on VoIP

systems.

Please see: Installing VoIP Systems.

CAPI (ISDN) cards

Any card supporting CAPI can be used as well. These cards will allow VoiceGuide to be used on

BRI ISDN lines (2 channel 128Kbs) and PRI (24 channel T1 or 30 channel E1) ISDN lines. There are

many manufacturers of CAPI cards, best known are AVM (Fritz!Card) and Eicon.

Please see: Installing with CAPI cards.

Voice Modems

Many modems can support "Voice" functionality, but most of them do not support it well, with poor

sound quality and unreliable detection of caller's key presses.

http://www.voiceguide.com/vghelp/source/html/install_v7_dialogicsr60.htm
http://www.voiceguide.com/vghelp/source/html/install_v7_dialogichmp.htm
http://www.avm.de/en/
http://www.eicon.com/
http://www.voiceguide.com/vghelp/source/html/install_v5_capi.htm

4

Other Telephony Devices

There are a number of other telephony cards and devices which can be used with VoiceGuide -

please see: Recommended Hardware

http://www.voiceguide.com/ivr-software/ivr-recommended-hardware.htm

5

Installing v7.x - VoIP (SIP) / HMP

VoiceGuide v7.x can use VoIP (SIP) to handle calls over the network interface.

No physical cards are needed.

VoIP deployments can also be made on Virtaul Machines and on 'Cloud' services.

Platforms supported: VMware ESXi, Microsoft Azure Cloud.

Installing Dialogic HMP

Dialogic HMP 3.0 drivers should be installed first.

Please always refer to the Dialogic Release Notes and/or Installation Notes to determine what

operating system may be used, and what system tests need to be ran to confirm HMPs suitability.

eg: hpettool.exe to test for HPET compatibility.

It is best if only one network interface is enabled on the system.

If more then one network interface is enabled on the system then Dialogic HMP must use the 'First'

network interface for all communications.

On Server class systems if there is an option to set 'C-State' then you need to ensure that C-State

is disabled (set to C0).

After installing HMP you will need to ensure that the Dialogic service is started. The Dialogic service

can be started using the Dialogic Configuration Manager (DCM).

If Dialogic HMP service has problems starting then you should ensure that there is no other VoIP

software installed on the system that would interfere with HMP operation, and that no anti-virus

type software is blocking the service start.

If there are still problems then please try fully disabling the Windows' User Access Control and then

reinstalling the Dialogic System Release drivers. Windows' User Access Control is disabled in the

Windows Registry, by setting the EnableLUA parameter to 0.

To re-install Dialogic System Release you need to first fully uninstall it, selecting 'Do not save

configuration', and restart system after uninstall. After instaling the Dialogic System Release the

system needs to be restarted again.

If using HMP 'thin interface' cards please ensure that the 'Device -> Restore Defaults' is done for all

the cards present in system as well as for the 'HMP_Software' device and the 'Configured Devices'

root. This is done using Dialogic DCM.

It's recommended to also set the Dialogic service to start automatically. This can be set using DCM

's Settings -> System/Device autostart -> Start System menu, or by using the Windows' Control

Panel -> System and Security -> Administrative tools -> Services applet.

HMP comes with a 1 port Evaluation license.

Please contact sales@voiceguide.com regarding purchasing of HMP licenses or obtaining temporary

mailto:sales@voiceguide.com

6

HMP evaluation licenses

Testing Dialogic HMP Installation

After installing HMP, start Dialogic's IP Media Server Demo application, and then perform a test call

into the system by dialling the IP address of the HMP system from a VoIP phone or softphone on

another system.

The IP Media Server Demo application is located here:

C:\ProgramData\Dialogic\HMP\demos\IPMediaServer\Release\IPMediaServer.exe

The C:\ProgramData\ directory is a hidden directory, and needs to be made visible first:

Windows 8, Windows 2012 :

In File Explorer click View on the menu bar at the top. From the displayed icons on the ribbon click

Options. From the opened File Options box go to View tab. In the Advanced Settings list select

"Show hidden files, folders and drives" option. Click OK to save.

(See also: here and here)

Windows 7, Windows 2008 :

Click on C:\ drive in Windows Explorer, then click on the "Organize" button in top left corner and

select "Folder and Search Options". Click on "View" tab and select "Show hidden files, folders and

drives" option. Click OK to save.

On Windows XP and Windows 2003 systems the IP Media Server Demo application is located here:

C:\Program Files\Dialogic\HMP\demos\IPMediaServer\Release\IPMediaServer.exe

Softphones

NOTE: The testing softphone MUST NOT be installed on the same system as Dialogic HMP.

It must be installed on some other system.

There can be no other SIP software that uses SIP 5060 port installed on same system as Dialogic

HMP.

Only one software can use the SIP 5060 port.

One softphone that you can use to dial the IP address directly is Linphone.

Linphone can be downloaded here: http://www.linphone.org/

With Linphone the SIP address to be dialled must be prefixed with "sip:" eg: sip:10.1.1.19 will dial

IP address 10.1.1.19 directly.

Also please select Linphone's Options->Preferences menu, and set the following:

http://blogs.msdn.com/b/zxue/archive/2012/03/08/win8-howto-19-show-hidden-files-folders-and-drives.aspx
http://www.tomshardware.com/faq/id-1656445/view-hidden-files-windows.html
http://www.linphone.org/

7

Network Settings tab : Media Encryption is set to 'None'

Codecs tab: only enable the PCMU and PCMA codecs, and disable the rest.

Another softphone that you can use to dial the IP address directly is SJPhone.

SJPhone can be downloaded here: http://www.sjlabs.com/sjp.html

Once SJPhone is installed the IP address by itself can be just entered as the number to call, and

SJPhone will dial that IP address directly.

Trace SIP Messages

WireShark can be used to confirm that SIP packets are arriving at VoiceGuide/HMP system.

To isolate SIP traffic the following should be specified in WireShark's Filter text box:

sip

To isolate SIP and RTP traffic the following should be specified in WireShark's Filter text box:

sip || rtp

To save the isolated traces go to WireShark's File->Export Specified Packets menu and save the

displayed packets as .pcapng format.

A successful running of the IPMediaServer demo should look like this in the Command Prompt

window:

C:\Program Files\Dialogic\HMP\demos\IPMediaServer\Release>ipmediaserver

**

* *

* IP Media Server - Media services over IP Demo Program. *

* *

**

DTMFMode inband

TxCoder[0]

 Capability: g711mulaw

 Type: 2

 Direction: 1

 Payload_type: 255

 FramesPerPacket: 20

 VAD: 0.

http://www.sjlabs.com/sjp.html

8

RxCoder[0]

 Capability: g711mulaw

 Type: 2

 Direction: 2

 Payload_type: 255

 FramesPerPacket: 20

 VAD: 0.

[info] CEventRouter::Init: Initializing channels...may take a few seconds!

Number of Fax (& Voice) boards found: 1

Number of Voice (& Fax boards) found: 1

Number of IPT boards found: 1

Number of IPM boards found: 1

Waiting for key:

 'Q' - to quit

CIPDevice::processEvent -> receive GCEV_UNBLOCKED on :N_iptB1T1:P_IP:M_ipmB1C1

Installing VoiceGuide

Dialogic's HMP drivers must be installed before proceeding with VoiceGuide installation (see above).

VoiceGuide needs to be installed using the Administrator account. If not logged in as Administrator

then right click on install .EXE and select 'Run as administrator'.

When installing VoiceGuide 7 select the "VoIP / SIP / HMP" option to install the configuration files

used for VoIP / HMP installations.

Configuring VoiceGuide

System configuration is set using the Config.xml file. Config.xml file is located in VoiceGuide's \conf\

subdirectory.

Config.xml is used to set the script to be used when answering incoming calls, and a number of

other settings.

The default Config.xml file opens one VoIP line.

See the sample Config files provided for examples of how to set up the Config.xml file for systems

other then the default 1 line VoIP setup.

If not running as Administrator then some permission changes may need to be made to allow

editing of Config.xml, VG.INI, etc. files.

In Windows Explorer:

9

- Right click on the VoiceGuide directory,

- Select Properties,

- Go to the Security tab,

- Make the necessary changes

Alterntively, the text editor application used to edit the Config.xml, VG.INI, etc. files would need to

be started using the 'Run as administrator' option. Then Windows will not block the saving of new

versions of Config.xml, VG.INI, etc. files.

Perform a test call into the system by dialling the IP address of the HMP system from VoIP phone or

softphone on another system.

In order for VoiceGuide to answer calls directed to specific VoIP lines and extensions VoiceGuide

must 'register' itself with the relevant VoIP Server. Configuration of the registration process is made

through the Config.xml. The relevant VoIP_Registrations and VoIP_Authentications sections in

Config.xml must be filled out in order for VoiceGuide to register the VoIP lines/extensions.

After you hear the demonstration script answer the call you are now ready to start creating your

own scripts, make outgoing calls etc.

The Script Designer and other VoiceGuide applications can be started by right-clicking on the IVR

tray icon and selecting from the context menu.

If not running as Administrator then you will not be able to stop and start the VoiceGuide service

using the VoiceGuide Service Monitor applet from the icon tray.

To stop/start the VoiceGuide IVR service you will need to go to Control Panel -> System and

Security -> Administrative tools -> Services

Setting Transport Protocol and Port

Default transport protocol is UDP. Most VoIP systems use UDP for SIP communications. If the VoIP

systems with which VoiceGuide is to communicate use TCP instead, then VoiceGuide can be

configured to use TCP by setting the following entry in VG.INI's [SIP] section:

E_SIP_DefaultTransport=ENUM_TCP

Port used can be set using the sip_signaling_port entry.

Firewall Configuration

In order to allow incoming VoIP calls to be received by VoiceGuide service the Firewall Inbound

Rules will need to be set to allow incoming SIP packets (or, if possible, the Firewall can just be

disabled).

Firewall Inbound Rules should be set to allow the vgIvrService.exe program to receive all types of

incoming messages (both TCP and UDP).

10

The specific port ranges used are: SIP: 5060

RTP: 49100 and above

VoiceGuide Reporting and REST API : 7130 - 7140

Wav file format

All sound files should be in .WAV uLaw format (8kHz, 8 bit, Mono, uLaw). uLaw is often used for

VoIP conenctions.

The exact same bytes from the .WAV uLaw sound file will be sent in the RTP packets if the

connection also uses G.711 uLaw. This allows exact control over quality of sound played over the

VoIP connection.

Applying Dialogic HMP License

After selecting the new license in the HMP License Manager the following steps need to be

performed in the DCM.

1. Click on the "HMP Software" entry in the DCM to select it.

2. Click Device -> Restore Defaults menu.

11

3. Press Yes.

12

4. The "Assign Firmware File" windows will open. Click on the license which you want to select and

then press OK.

5. Another Winow will open for a few seconds.

13

6. On completion the "Restore device defaults successful" message will be shown. License has now

been applied.

14

15

Installing v7.x - Telephone lines/trunks

Installing Dialogic Drivers

Dialogic Drivers (System Release) for use with VoiceGuide can be downloaded from the VoiceGuide

Downloads page.

Please always refer to the Dialogic’s Release Notes and/or Installation Notes to determine what

Operating System may be used.

The Dialogic card should be placed in system, and the telephone lines should be attached to the

cards before the Dialogic System Release drivers are installed. The Dialogic System Release Drives

will detect the cards present in system upon installation.

Dialogic Drivers install asks user to select options to install. It is best to just select all the options

available.

If using a 32-bit version of Windows, the Physical Address Extensions (PAE) need to be disabled.

Dialogic install program will display an alert if it detects that PAE is enabled on system.

After instaling the Dialogic System Release the machine needs to be restarted.

After restarting the system open the Dialogic Configuration Manager (DCM) and confirm that the

Dialogic service can be started.

If there are problems starting the Dialogic service please ensure that the Windows account used

has sufficient priviledges and the install was started using 'Ran as Administrator' option.

If there are still problems then please fully disable the Windows' User Access Control and then

reinstall the Dialogic System Release drivers. Windows' User Access Control is disabled in the

Windows Registry, by setting the EnableLUA parameter to 0.

To re-install Dialogic System Release you need to first fully uninstall it, selecting 'Do not save

configuration', and restart system after uninstall.

After instaling the Dialogic System Release the machine needs to be restarted.

The Dialogic service should be set to start automatically. Use DCM 's Settings -> System/Device

autostart -> Start System menu, or by using the Windows' Control Panel -> System and Security ->

Administrative tools -> Services

Only after the Dialogic System Release drivers are installed on the system and the the Dialogic

service is started can the VoiceGuide installation proceed.

Testing Dialogic Installation

Dialogic drivers install some sample programs that can be used to test correct card/drivers

operation.

The sample programs are located in this directory:

C:\ProgramData\Dialogic\demos\voice\

16

The C:\ProgramData\ directory is a hidden directory, and needs to be made visible first.

To make C:\ProgramData\ directory visible click on C:\ drive in Windows Explorer, then click on the

"Organize" button in top left corner and select "Folder and Search Options". Click on "View" tab and

select "Show hidden files, folders and drives" option.

On the older Windows XP and Windows 2003 systems the sample programs are located in this

directory:

C:\Program Files\Dialogic\demos\voice\

One of the sample programs that can be used is ANSRMT.EXE, it is located in

the \demos\voice\ANSRMT\ subdirectory.

Installing VoiceGuide

Dialogic System Release drivers must be installed first.

VoiceGuide needs to be installed using the Administrator account. If not logged in as Administrator

then right click on install .EXE and select 'Run as administrator'.

When installing VoiceGuide select the "Telephone Lines (Analog, T1/E1 ISDN)" option to install the

configuration files which are used with the Dialogic cards.

Configuring VoiceGuide

System configuration is set using the Config.xml file. Config.xml file is located in VoiceGuide's \conf\

subdirectory.

Config.xml is used to set the script to be used when answering incoming calls, and a number of

other settings.

The default Config.xml file opens the first 4 ports of an analog Dialogic card. If an analog Dialogic

card is installed then immediately after installing VoiceGuide you will be able to call into the system

on any of the 4 ports and you will hear VoiceGuide answer the call and start a demonstration

'Credit Card Payment' script.

If a card other then a 4 port analog card is used then the Config.xml file in VoiceGuide's \conf\

subdirectory will need to be changed to match the card. Sample Config.xml files are provided in that

directory as well, showing how Config.xml should be set if a card other then a 4 port analog card is

used.

If not running as Administrator then permission changes may need to be made to allow editing of

Config.xml, VG.INI, etc. files.

In Windows Explorer:

17

- Right click on the VoiceGuide directory,

- Select Properties,

- Go to the Security tab,

- Make the necessary changes

Alterntively, the text editor application used to edit the Config.xml, VG.INI, etc. files would need to

be started using the 'Run as administrator' option. Then Windows will not block the saving of new

versions of Config.xml, VG.INI, etc. files.

After you hear the demonstration script answer the call you are now ready to start creating your

own scripts, make outgoing calls etc.

The Script Designer and other VoiceGuide applications can be started by right-clicking on the IVR

tray icon and selecting from the context menu.

If not running as Administrator then you will not be able to stop and start the VoiceGuide service

using the VoiceGuide Service Monitor applet from the icon tray.

To stop/start the VoiceGuide IVR service you will need to go to Control Panel -> System and

Security -> Administrative tools -> Services

Wav file format

When using VoiceGuide v7.x all sound files should be in format: uLaw or ALaw, 8kHz, 8 bit, Mono.

uLaw or ALaw format is selected at install time.

Systems located in North America and Japan should use the uLaw format.

Systems located in the rest of the world use ALaw format.

These are the two formats used by telephone companies to transmit voice over the traditional

analog and digital connections, and using this sound format will result in little or no distortion of the

sound file when it is transmitted over the phone line.

18

Installing v6.x - Telephone lines/trunks

NOTE: For new systems it is recommended that VoiceGuide v7 is used.

Installing Dialogic Software

We recommend using Dialogic's System Release 6.0 drivers.

VoiceGuide v6 will still work if Dialogic's System Release 5.1.1 + SR5.1.1SP1 drivers are used, but

note that most of Dialogic's newest cards require System Release 6.0 drivers.

Please always refer to the Dialogic's Release Notes and/or Installation Notes to determine what

Operating System may be used with these drivers.

The Dialogic card should be placed in system before the Dialogic System Release drivers are

installed.

The Dialogic System Release Drives will detect the cards present in system upon installation.

The Dialogic service must then be started. This can be done using the Dialogic Configuration

Manager (Windows' Start -> Dialogic) or using the Windows' Control Panel -> System and Security -

> Administrative tools -> Services list.

The Dialogic service should be set to start automatically. Use DCM 's Settings -> System/Device

autostart -> Start System menu, or by using the Windows' Control Panel -> Administrative tools ->

Services

Only after the Dialogic System Release drivers are installed on the system can the Dialogic service is

started can the VoiceGuide installation proceed.

Installing VoiceGuide

Dialogic System Release drivers must be installed and started before installing VoiceGuide v6(see

above).

VoiceGuide v6.x comes pre-configured to be used with the first 4 ports of an analog Dialogic card.

If an analog Dialogic card is installed then immediately after installing VoiceGuide you will be able to

call into the system and you will hear VoiceGuide answer the call and start a demonstration Credit

Card Payment script.

Dialogic lines which VoiceGuide should be using are set in the Config.xml file.

Config.xml file is l;ocated in VoiceGuide's \Data\ subdirectory.

If a card other then a 4 port analog card is used then you will need to first change the Config.xml

file in VoiceGuide's \data\ subdirectory before starting VoiceGuide. Sample replacement Config.xml

files are provided in that directory as well, showing how Config.xml should be setup if a card other

19

then a 4 port analog card is used.

After you hear the demonstration script answer the call you are now ready to start creating your

own scripts. Refer to the Script Design section of the Help file.

Running VoiceGuide

Before running VoiceGuide you need to ensure that the Dialogic service has fully started. Confirming

that the service status is 'Started' can be done using the Dialogic Configuration Manager (Windows'

Start -> Dialogic) or using the Windows' Control Panel -> System and Security -> Administrative

tools -> Services list.

Wav file format

When using VoiceGuide v6.x all sound files should be in format: PCM 8kHZ, 8 bit, Mono.

20

Installing v5.x - TAPI devices

Please note that we do not recommend using voice modems. Voice modems are not really designed

to implement professional IVR/Dialer/Voicemail systems.

Many voice modems have one or more of the following problems:

Poor sound quality/volume.

Unreliable DTMF tone detection.

Cannot do call transfers as hookflash length is too long or too short.

Mistakenly detect a disconnect tone while playing or recording messages and hangup a call

halfway through playing/recording of sound file.

Unable to interrupt the playing of a sound file halfway through.

The sound quality of various modems varies greatly. In general external modems work better then

internal modems.

As TAPI devices on the market change frequently we cannot provide a definitive list of current 'best'

TAPI devices. We have found that the quality of sound playback and recording can vary between

different versions of the same modem, and it will sometimes depend on which version of Windows

the modems is installed. When selecting your voice modem we recommend trying a few modems if

possible and choosing the best one. The problems faced by many users in finding an adequate

sounding voice modem is the reason why many users opt to use telephony cards instead.

Voice modems can be used under Win98/ME, Win2000 and WinXP.

Please ensure that the device's Wave Driver has installed correctly. Without this driver installed

VoiceGuide will not regard the device as as a Voice capable device.

Running the Setup Wizard

The Setup Wizard will discover all the TAPI capable telephony devices and will allow you to select

which devices you would like to use with VoiceGuide:

21

Next you need to select the Scripts which will be used by VoiceGuide when an incoming call arrives

on the selected devices. To begin with we'd recommend you select the demonstration script in

VoiceGuide's "/Scripts/Credit Card Payment" directory:

When Setup Wizard configuration has completed you should now be able to start VoiceGuide and

call into the system to hear it answer the call and lead you through the selected VoiceGuide script.

You can open the "/Scripts/Credit Card Payment" in the Graphical Design Environment to see how

the script has been put together.

22

Sound file format

When using a TAPI/WAVE device all sound files should be in format: PCM 8kHZ, 16 bit, Mono.

23

Installing v5.x - CAPI devices

VoiceGuide v5 can be used to control CAPI capable hardware.

Most CAPI capable cards are BRI ISDN cards which can support 2, 4 or 8 ports. If T1/E1 ISDN

systems are considered then VoiceGuide v7 should be used.

Popular CAPI cards are:

AVM (Fritz!Card, B1, C2, C4, T1, Fritz!GSM, etc)

Eicon (BRI-2M, 4BRI-8M, etc)

Eicon cards also come with their own TAPI/Wave drivers, which can be used directly by VoiceGuide.

Some CAPI devices do not come with their own TAPI/Wave drivers, and in these cases in order for

them to be able to be used by VoiceGuide a 3rd party product is needed: ComISDN, which is

essentially a converter between the CAPI interface and TAPI/Wave interface, allowing programs

that use the TAPI/Wave interface to work with any CAPI based hardware.

Install order

1. Install the CAPI hardware.

2. Download and Install the ComISDN TSP from https://n-g-media.com/, and configure it to control

the CAPI hardware.

3. Install VoiceGuide (select the "TAPI" install option),

Configuring ComISDN

The ComISDN TSP can be configuration window is accessed using:

Open Start -> Settings -> Control Panel then click "Phone and Modem Options" or "Telephony", and

then under "Advanced" or "Telephony Drivers", select "ComISDN Service Provider" and click

"Configure".

The ISDN Interface Properties window will appear:

http://www.avm.de/en/
http://www.dialogic.com/en/products/serial-protocol-adapters/eiconcards.aspx
https://n-g-media.com/

24

The main setting that needs to be confirmed as having been correctly set is the "Network audio

protocol". If not set correctly the sound played will sound distorted.

To set the Network Audio Protocol select the Computer (root) and then click "Properties".

25

By default, ComISDN will use "u-Law" if it detected that the version of Windows installed is a US,

Canadian or Japan one. For all other countries, it will use "A-Law".

If Windows has not been configured with the correct country setting then it is possible that this

setting is incorrect and will need to be set manually. please ensure that it is set to "u-Law" if you

are located in US, Canada or Japan, and set it to "A-Law" if you are located in other countries. It

may also want to confirm with the telephone company or PBX supplier which protocol should be

used - or just try them both and see which one sounds better.

Running the Setup Wizard

The Setup Wizard will discover all the TAPI capable telephony devices and will allow you to select

which devices you would like to use with VoiceGuide:

26

Next you need to select the Scripts which will be used by VoiceGuide when an incoming call arrives

on the selected devices. To begin with we'd recommend you select the demonstration script in

VoiceGuide's "/Scripts/Credit Card Payment" directory:

When Setup Wizard configuration has completed you should now be able to start VoiceGuide and

call into the system to hear it answer the call and lead you through the selected VoiceGuide script.

You can open the "/Scripts/Credit Card Payment" in the Graphical Design Environment to see how

the script has been put together.

27

Wav file format

All sound files used on a VoiceGuide v5 system should be in format: PCM 8kHZ, 16 bit, Mono. Other

file formats will not play.

28

Text To Speech

Only the Trial and Enterprise versions of VoiceGuide support Text to Speech (TTS).

The Personal and Professional versions of VoiceGuide do not support TTS.

VoiceGuide can use SAPI compatible TTS engines, and a range of other TTS engines for which

MRCPv1, MRCPv2 and native integrations are available.

Please contact sales@voiceguide.com to discuss which TTS engine would best suit your

requirements.

VoiceGuide v7 - SAPI TTS

SAPI TTS engine to be used is set in VG.INI, section [SAPI], field TTSEngine. eg:

1111111111[SAPI]

TTSEngine=Cepstral Allison-8kHz

The list of TTS engine names that are installed on the system can be obtained from the VoiceGuide

ktTts trace log file. At the beginning of the trace file there will be a section that looks like this:

124244.953 2812 il voice 0 is: [Microsoft Mary], ID=

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\MSMary]

124244.953 2812 il voice 1 is: [Microsoft Mike], ID=

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\MSMike]

124244.953 2812 il voice 2 is: [Microsoft Sam], ID=

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\MSSam]

124244.953 2812 il voice 3 is: [Cepstral Allison-8kHz], ID=

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\Cepstral_Allison-8kHz]

124244.953 2812 il voice 4 is: [Sample TTS Voice], ID=

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\SampleTTSVoice]

The name of the engine is listed after the "voice X is:" tag.

The example listing above shows that the following TTS engines are installed on the system:

Microsoft Mary

Microsoft Mike

Microsoft Sam

Cepstral Allison-8kHz

Sample TTS Voice

so any of the above can be specified as the value of the TTSEngine entry in the VG.INI file.

mailto:sales@voiceguide.com

29

Format of the WAV file which the SAPI TTS engine should generate can be set in VG.INI, section

[SAPI], field SpStreamFormat. eg:

[SAPI]

SpStreamFormat=8khz8

The above "8khz8" entry is used to request that SAPI TTS generates 8kHz 8-bit PCM WAV files.

Other possible settings are:

8khz8

8khz16

11khz8

11khz16

16khz8

16khz16

alaw_8

ulaw_8

VoiceGuide v5 / v6 - SAPI TTS

Default TTS voice can be set using the Speech applet from the Windows Control Panel:

If the Speech applet show above cannot be seen in the Control Panel then it can be found in this

30

location:

C:\Program Files\Common Files\Microsoft Shared\Speech\sapi.cpl

We have received reports that selecting the default TTS engine using the Control Panel's Speech

applet does not work on some systems. In these situations we'd recommend moving to VoiceGuide

v7. VoiceGuide v7 sets the TTS engine internally.

Installing and Testing SAPI TTS Engines

Installation of Microsoft's SAPI 5.1 SDK is recommended to allow testing of SAPI TTS engines.

SAPI requires that a sound card is present in the system in order to operate properly.

To test if the SAPI TTS engine installation completed correctly the SAPI SDK's TTSApp program can

be used:

Start -> Programs -> Microsoft Speech SDK 5.1 -> Tools -> TTSApp

Then select the TTS engine and press the "Save to .wav" button. If the .WAV file was created and

you can play it back using a sound file player then the SAPI TTS engine is properly installed.

31

Call Transfers and Conferencing

VoIP - SIP

VoiceGuide supports SIP REFER transfers (RFC 3515).

'Tromboned' type transfers are also supported, where VoiceGuide will dial out on another line and

connect the two calls togethter. Using the 2-line-conference type trasnfer lets VoieGudie monitor

the conversation and react to any selections made during the connection. Afterwards the

conference is ended VoieGuide can take both parties through further separate IVR scripts.

T1, E1, ISDN Trunks

VoiceGuide supports ISDN 'Two B Channel' Transfers (TBCT)

'Tromboned' type transfers are also supported, where VoiceGuide will dial out on another line and

connect the two calls togethter. Using the 2-line-conference type trasnfer lets VoieGudie monitor

the conversation and react to any selections made during the connection. Afterwards the

conference is ended VoieGuide can take both parties through further separate IVR scripts.

Traditional Analog Lines and 'Robbed Bit' T1 and E1

VoiceGuide can do call transfers on traditional telephone lines in a number of different ways. Most

common type of transfer is called a "hookflash transfer". To do this transfer manually from a

telephone handset the operator usually just presses the 'flash' button, then dials the telephone

number to which the call is to be transferred and then hangs up.

When using hookflash transfers some systems will require you to wait untill the destination

answers the call before being able to hang up, and some systems will require you to wait only until

the destination extension is ringing before hanging up. Some systems will allow you to hangup

straight away. Some systems do not support hookflash transfers at all and in such cases you'll

need to make a call on another line and have VoiceGuide connect the incoming and outgoing calls

together internally to route the call to a new number. These are called 'Tromboned' trasnfers.

The Help file's section on the Call Transfer module lists all the different ways in which VoiceGuide

can do call transfers.

Before trying to get VoiceGuide to do the transfers it's best to first establish exactly how transfers

can be made on your system. Note down step by step what needs to be done and what buttons

need to be pressed on your system to make the transfer happen if you just use a telephone

handset yourself. Once this is all established you can then go ahead and configure VoiceGuide to do

exactly the same things to effect a transfer.

VoiceGuide comes with pre-programmed settings for signals which your PBX or Telephone Network

uses to place calls on hold and to forward or conference calls which work for most PBXs, but your

PBX / Telephone Network may require different settings. If you do not know what those signals are,

you will probably need to ask your PBX supplier or call your Telephone Company.

32

On almost all systems the 'hookflash' (also known as 'flash') signal is used in one way or another.

Hookflash is just the action of hanging up the call on-hook for a very short time and then picking up

the handset again. The length of the hookflash required differs from system to system - the length

used by your Modem or Telephony Card will have to match that required by your PBX / Telephone

Network, otherwise the transfers/conferences will not work. If the hookflash is set too short then it

will not be noticed by the PBX (the caller will just hear a short click on the line) and if the hookflash

is set too long then the PBX will interpret it as a receiver hanging up and will end the call (the caller

will then hear just silence or a disconnect tone) and the extension dialed afterwards may be

treated by the PBX/Switch as a new call. Note that if the PBX/Switch treats the dialed extension as

a new call then the dialed extension number may ring. The time of ringing can be very short (if blind

transfer is used) or until the call is answered or times out (if monitored or announced transfer is

used).

Most modems cannot vary the length of their hookflash, and if their default length does not match

the length required by your PBX / Telephone Network then you will not be able to use that modem

to transfer/conference calls.

Telephony Cards allow the hookflash length to be set by the user – ensuring that a Telephony Card

can be configured to allow it to successfully perform call transfers and conferencing. This is why it is

highly recommended to use a Telephony Card if your application needs to do call transfers /

conferencing.

Setting PBX control strings

In VoiceGuide Script Designer click on the Edit menu and select PBX Command Strings.

The signals sent to your PBX or Telephone Network can be configured here. VoiceGuide will

generate the specified signals to command the PBX / Telephone Network to perform call transfers

33

and conferences.

The "!" character represents a hookflash.

The screen capture above shows a typical configuration which should work for many systems. You

should confirm that these settings are OK with your PBX supplier or your Telephone Company, and

change them if your PBX supplier or your Telephone Company indicates that they should be

changed.

After changing the PBX strings VoiceGuide will nmed to be restarted to read in the new settings.

If hookflash transfer is not working

If you are encountering problems performing a hookflash transfer please try the following:

Step 1 : Is it possible to do a Hookflash transfer on that line ?

Try attaching a normal analog telephone handset to the line and see if you are able to perform the

transfer by just pressing the 'Flash' button and then dialing the destination extension number. If

the PBX/Switch does play the dial tone after the hookflash is pressed the it is possible to perform

hookflash transfers on that line. After confirming the Switch/PBX react to a hookflash try dialing the

transfer destination number and confirm if the dialed number starts ringing (the original caller

should be on hold all this time - and usually hearing some on-hold music). Next see if the

destination extension will keep ringing if you hang up the phone. If it does keep on ringing after the

party performing the transfer hangs up then it looks like you are able to do a "Blind Hookflash

Transfer". If the destination extension stops ringing when you hangup the phone then it looks like

on this system the destination extension needs to be answered before the extension performing

the transfer hangs up - so only monitored or Announced hookflash transfers will work.

If you have verified that it is possible to perform hookflash transfers on the line you are using then

you can now move onto confirming if the telephony device used by VoiceGuide is issuing the correct

length hookflash.

Step 2 : Is the hookflash length correct ?

Use the VoiceGuide script to answer the original call and use the Call Transfer module to attempt a

call transfer. If the hookflash is set too short then it will not be noticed by the PBX (the caller will

just hear a short click on the line and will not be put on hold) and if the hookflash is set too long

then the PBX will interpret it as a receiver hanging up and will end the call (the caller will then hear

just silence or a disconnect tone) and then when the hookflash finishes it will be interpreted by the

PBX/Switch as the line going off-hook and treated by the PBX/Switch as a new call (not a transfer),

with the extension dialed afterwards just treat as a the number dialed on this new call.

Step 3 : Is the PBX/Switch correctly receiving the transfer destination number ?

It is also possible that there is not enough delay between the hookflash and the dialed extension,

in which case the leading dialed digit(s) may not be detected by the PBX/Switch, so the PBX/Switch

will have an incomplete number to dial. VoiceGuide leaves enough of a pause between hookflash

34

and dialed number to not let this happen but if you think this may be occurring then you can add

one or more commas before the extension number, like this:

,1234

Each comma usually represents a delay of around 2 seconds. You can also use a Play module to

issue the hookflash followed pause(s) and extension number. To do a hookflash transfer to

extension 1234 the following may be specified in a Play module: !,1234 or !,,1234 etc.

Setting Hookflash Length

When using VoiceGuide for Dialogic the hookflash length is set in Config.xml file, in the

Parmeters_DxBd section. The following section of Config.xml should be edited:

<Parmeters_DxBd>

...

<Parmeter>

 <Description>Flash time during dialing (10ms units)</Description>

 <Key>DXBD_FLASHTM</Key>

 <Value>10</Value>

 <Default>10</Default>

</Parmeter> ...

</Parmeters_DxBd>

A setting of 10 means 100ms. The setting is in 10ms units.

Setting Hookflash length on Dialogic cards using the .PRM file

Determine which parameter file is used by the Dialogic Configuration Manager and then change the

hookflash length specified in that parameter file.

The release/installation notes which came with the card should inform you what Parameter File you

should be specifying in the DCM - if you do not have the release notes then contact the supplier

and they should be able to advise you which .PRM file to use.

If you have not specified the parameter file explicitly in the Dialogic DCM's "ParameterFile" setting

then you can determine which parameter file is being used based on what "Country" is specified.

The filename of the parameter file loaded for a D/4PCI is xx_d4p.prm where "xx" is based on what

country is selected.

Eg: If country setting is "Australia/NZ" then the prefix is "an" and the parameter file for a D/4PCI is

an_d4p.prm

You will need to change the line:

PARAM 52:(DECIMAL WORD) 50 # Hook Flash/earth recall duration

to:

35

PARAM 52:(DECIMAL WORD) 10 # Hook Flash/earth recall duration

ie: remove the # at the beginning and change 50 to 10. Parameter is in 10ms units, so a setting of

10 will indicate 100ms.

Dialogic service must be restarted to read in the parameter file.

36

Databases

VoiceGuide can interact with any database or data source.

Any .NET Data Provider, ODBC Source or OLE DB can be used.

.NET and OLE DB Databases and Data Sources

Only a valid Connect String needs to be specified. No other configuration is needed.

A good resource for connection strings is: https://www.connectionstrings.com/

Configure ODBC Data Sources

If using the ODBC interface the ODBC driver should be specified in the Connect string, or an ODBC

data source must be configured in Windows.

Note that for VoiceGuide v7 and later it is preferable to use the ADO.NET Data Provider, as this

methoud is usually faster then using ODBC approach.

If using ODBC you must ensure that the 32-bit ODBC driver for your database has been installed.

VoiceGuide is a 32-bit application and needs to use 32-bit ODBC drivers (not 64-bit ODBC drivers).

On 64-bit systems there are two ODBC Administrator apps. A 32-bit version and 64-bit version.

Please read this: http://support.microsoft.com/kb/942976 for information on these two versions

On 32-bit systems to open the ODBC Administrator from the Control Panel:

1.Click Start, point to Settings, and then click Control Panel.

2.Double-click Administrative Tools, and then double-click Data Sources (ODBC).

The ODBC Data Source Administrator dialog box appears:

https://www.connectionstrings.com/
http://support.microsoft.com/kb/942976

37

Select the 'System DSN' tab, and then click on the 'Add; button to display the list of ODBC drivers

installed on the system:

Select the driver which corresponds to the database you want to add, and press Finish. Your

Database's ODBC driver should now take you through the rest of the Data Source setup process -

the options presented in this stage will be different for each different database source. Please

consult your database user's manual for information.

If your database's driver is not listed you should install your databases ODBC drivers. Please

consult your database user's manual for information.

38

In the example above we selected an Access database Products.mdb and have called our Data

Source 'Products'. Further parameters (eg database's password) can be set using the 'Advanced'

options button.

Each different database type will have a different setup screen - for example the MS SQL Server

ODBC setup screen looks like this:

After setting up our ODBC Data source the new source will appear in the User's list of Data Sources.

39

This ODBC Data Source is now ready to be used. The "DB Query" module can be used to access

ODBC Data Sources from a VoiceGuide script.

40

End of Call Detection

On systems using VoIP - SIP or T1/E1 ISDN end of call is detectable by:

- End of call message.

- Timeout awaiting input from caller.

On systems using Analog Telephony Cards (eg: Dialogic D/4PCI) end of call is detectable by:

- Loop Current Drop on the line.

- Disconnect tone on the line.

- Special DTMF tone played by PBX/Switch.

- Timeout awaiting input from caller.

On systems using Voice Modems end of call detection is made by:

- Disconnect tone on the line.

- Timeout awaiting input from caller.

End of Call Message

VoIP and ISDN systems all use digital signalling to immediately indicate end of call when the other

party hangs up the handset. This is the most reliable way of obtaining end of call signal. No

special configuration is required in order fro the system to detect the ISDN end of call signalling.

VoiceGuide will detect the VoIP and ISDN signalling immediately and will end the script and

hangup the line as well.

Loop Current Drop

Loop current drop is used by many telephone companies and PBXs to indicate end of call (other

party has hung up). Telephony Cards can detect loop current drop and will inform VoiceGuide of it

- VoiceGuide will then immediately hang up as well. Please note that sometimes a loop current

drop can be delayed and can arrive several seconds after caller has hung up.

Timeout awaiting input from caller

If there is a timeout awaiting a response from the caller then VoiceGuide will by default hangup

41

the call.

If however a 'timeout' or a 'fail' path has been set up in that module, then that path will be taken

instead.

'Timeout' or 'fail' paths should not be used to advance script from one module that expects a

response from caller to another module that again expects some response from caller, as this will

just delay the system hanging up the call.

Disconnect Tone

A tone is usually played on the line when the caller has hung up. This tone is known as a 'busy

tone' or a 'disconnect tone'. PBXs can be configured to play a tone, or send a DTMF tone (usually

tone "D") to indicate end of call.

Detection of disconnect tones: Voice modems come pre-programmed with sets tones that they will

detect as 'end-of-call' tones - which cannot be changed. Some voice modems detect end-of-call

tones well, but some do not. Telephony cards also come pre-programmed with sets tones that they

will detect as 'end-of-call' tones, but can also be be programmed what disconnect tones to listen

for. This allows telephony card to have its end-of-call (disconnect) tone detection matched to those

played on the line used.

Accuracy of tone detection with telephony cards is much better then with modems. Some modems

do not detect tones and some falsely detect disconnect tones while playing/recording sound files or

when a DTMF key is pressed by the caller.

Determining the Disconnect tone frequency and cadence :

Dialogic has the PBXpert application which automates the detection and setting of disconnect

tones. This is a good tool to use if you have access to 2 lines attached to the Dialogic card.

Otherwise please see instructions below for recording and determining frequencies when only a

single analog line is available:

To find out the frequencies of the disconnect tone played by your telephone system just record it

using VoiceGuide's Record module (just start recording then hang up) and then analyze the

frequencies using any of the more advanced sound editors

eg: when using Audacity (http://audacity.sourceforge.net/) :

1. Open the file in Audacity

2. Highlight the section of the sound file where the tone is present (the "ON" part of the tone)

3. Go to "View" menu and select "Plot Spectrum"

4. Note at what frequency the peak(s) is/are.

5. Highlight the entire section when tone is ON and check the interval, looking at the selection's

timing data at bottom of Audacity's window.

6. Highlight the entire section when tone is OFF and check the interval, looking at the selection's

timing data at bottom of Audacity's window.

http://audacity.sourceforge.net/

42

Screenshot below shows Audacity with a disconnect tone with the ON part of the disconnect tone

highlighted. The Selection interval timing is displayed at the bottom of the window - in this case the

ON part of the tone lasts about 250milliseconds (0.250 seconds).

Below screenshot shows the Frequency analysis window which is shown when Audacity's "View"->

"Plot Spectrum" menu is selected.

The peak is at 428Hz.

Screenshot below shows Audacity with a disconnect tone with the OFF part of the disconnect tone

highlighted. The Selection interval timing is displayed at the bottom of the window - in this case the

OFF part of the tone lasts about 750milliseconds (0.750 seconds).

43

Based on the above information the disconnect tone in he example above is a single tone of 428Hz

which lasts about 250ms and then a period of silence which lasts about 750ms.

The recommended settings for Dialogic cards to detect this tone reliably would be:

Freq1: 428

Freq1 dev: 40

Freq2: 0

Freq2 dev: 0

On time: 25

On time dev: 5

Off time: 75

Off time dev: 5

Repetition count: 3

When specifying the On/Off times (cadence times) for Dialogic the lengths of time are in units of

10milliseconds, so a value of 25 represents 250milliseconds.

For allowed variances (deviations) in frequency and time it's usually appropriate to use about 10%

of the value for variance. For 'cadence' usually a value of 5 is OK (a value of 5 is 50miliseconds). If

trying to detect a continuous tone which does not have ON/OFF cadence you should set the

"Repetition Count" to be 0 and the OFF time to 0 as well.

VoiceGuide 7 and VoiceGuide 6 :

The Disconnect tone must be set in ConfigLine.xml file which can be found in VoiceGuide's \data\

subdirectory.

The Tone definitions which should be edited is the DISCONNECT_USER_1 or DISCONNECT_USER_2

(DISCONNECT_TAPI1 or DISCONNECT_TAPI2 in v6). The TID_DISCONNECT tone definition is only

used on outbound calls, and it can also be changed if required.

An example entry in ConfigLine.xml:

<Tone Name="DISCONNECT USER 1">

<Notes>Disconnect Tone</Notes>

44

<ID>DISCONNECT_USER_1</ID>

<Freq1>428</Freq1>

<Freq1Dev>50</Freq1Dev>

<Freq2>0</Freq2>

<Freq2Dev>0</Freq2Dev>

<On>25</On>

<OnDev>5</OnDev>

<Off>75</Off>

<OffDev>5</OffDev>

<Count>3</Count>

</Tone>

DTMF Disconnect tones :

Detection of DTMF disconnect tones : VoiceGuide is configured by default to react to

DTMF key "D" as an indication of disconnect. Selection of which DTMF tone should be

used by VoiceGuide as a disconnection tone can be made in the [PBX] section of the

VG.INI file.

There have been a few good threads covering this on VoiceGuide's Support Forum:

http://voiceguide.com/forums/index.php?showtopic=599

http://voiceguide.com/forums/index.php?showtopic=768

In general Dialogic cards are pretty good at correctly detecting disconnection tones

and if the tones are defined with low tolerance bands then the probability of false

detections is low. If the tolerance bands however are set widely, allowing a wide

range of tones and/or frequencies then false detections of disconnect tones can occur

just while a person is speaking or a sound file is being played. As disconnect tone

detections will result in the call being ended immediately it is imperative that the

possibility of false detections is as low as possible.

One of the situations where disconnect tone definition parameters need to be set

broadly is when a number of different disconnect tones needs to be detected. To setup

the system to detect a variety of tones it would be necessary to record all the tones

which you want the system needs to detect, analyze them with Audacity to find out the

frequencies and timings and then come up with the one global setting which will be

able to detect them all - keeping in mind that the broader the tolerances the higher

the chance of false busy detections... In situations like these using T1/E1 ISDN lines

would be a better solution.

NB. VoiceGuide allows for a different ConfigLine.xml file to be used for each channel

- so each channel can have it's own tone configurations. Use <ConfigLine> tag within

http://voiceguide.com/forums/index.php?showtopic=599
http://voiceguide.com/forums/index.php?showtopic=768

45

the <Channel> entry to specify the LinesConfig.xml file specific for that channel. eg:

<Name>dxxxB1C1</Name>

<Protocol>pdk_na_an_io</Protocol>

<RingsBeforeAnswer>0</RingsBeforeAnswer>

<script>C:\Scripts\MyScript.vgs</Script>

<AllowDialOut>1</AllowDialOut>

<ConfigLine>C:\MyConfigs\ConfigForUsCalls.xml</ConfigLine>

</Channel>

End of Call Detection: Special DTMF tone played by PBX/Switch

Some PBXs and Switches can be set up to play a DTMF tone on the line when the PBX/

Switch detects that the other party has hung up. The DTMF tone chosen to indicate that

is usually the "D" tone.

Most telephone handsets do not have the DTMF A, B, C and D tones on their keypad, so

the callers cannot generate these tones themselves (either intentionally or by

mistake). This makes the "DTMF Disconnect Tone" a very useful way of detecting end of

call.

If the PBX or Switch is capable of generating DTMF tone at end of call then we highly

recommend using this approach as it is a very reliable way of informing VoiceGuide

immediately when the call has finished.

The DTMF Disconnect Tone for which VoiceGuide will listen and use as an indication of

end of call can be set by selecting "PBX Command Strings" from the "Edit" menu in

VoiceGuide Script Designer:

46

47

Distinctive Ring Detection

Some traditional analog phone lines (POTS lines) can be set up so that calls to 2 or more telephone

numbers will be sent to them, with the recipient being able to tell which number was dialed by the

different ring tone played when calls to different numbers arrive. These different ring types are

called "Distinctive Ringing"

VoiceGuide can be setup to detect the different type of Ringing and make this information available

to the script.

For VoiceGuide to detect the different rings, the cadences of the rings need to be specified in a

ConfigLine.xml file. Here is the relevant section of that file with one ring tone defined.

<DistinctiveRings>

 <DistinctiveRing>

 <Name>TestPBXDoubleRing</Name>

 <ID>TestPbxStandard</ID>

 <Description></Description>

 <Notes></Notes>

 <Cadence>

 <On>55</On>

 <OnDev>10</OnDev>

 <Off>55</Off>

 <OffDev>10</OffDev>

 </Cadence>

 <Cadence>

 <On>55</On>

 <OnDev>10</OnDev>

 <Off>285</Off>

 <OffDev>10</OffDev>

 </Cadence>

 </DistinctiveRing>

</DistinctiveRings>

The time intervals are all specified in 10ms units. The above example shows the definition of a ring

that is on for 550ms, the off for 550ms, then on again for 550ms and off for 2850ms, with the

pattern repeating afterwards. This definition is loaded by VoiceGuide at startup, and incoming Ring

signals (on analog lines) are compared to see if they match any of the definitions.

If a ring matches on of the definitions then the $RV[DISTINCT_RING] variable is set to hold the Name

value of the ring definition entry. eg. if the ring matches the example definition above then

VoiceGuide will set $RV[DISTINCT_RING] to hold a value of: TestPBXDoubleRing also $RV

[DISTINCT_RING_TestPBXDoubleRing] will be set to hold a value of True

Note that VoiceGuide must be set to answer at the beginning of 3rd ring or later in order to be able

to hear enough rings to match up their cadence with the example sequence. The 'answer after X

rings' setting must always be at least 1 more then the number of Cadence entries in the

DistinctiveRing definition.

48

Confirming the Distinct Ring cadence is loaded properly

Here is the relevant extract from the VoiceGuide log file showing the details of the cadence loaded

by Voiceguide at startup.

074958.48 0 init load Distinct Ring definitions start [C:\Projects\vg32

\data\ConfigLine.xml]

074958.49 0 init distinct ring definitions found:1

074958.49 0 init ring 1 [TestPBXDoubleRing] total cadences:2

074958.49 0 init distinct ring 1 [TestPBXDoubleRing] cadence 1 [55:10,55:10][110:20]

074958.49 0 init distinct ring 1 [TestPBXDoubleRing] cadence 2 [55:10,285:10][340:20]

074958.49 0 init load Distinct Ring definitions end

Relevant log section showing matching incoming ring

Here is the relevant extract from the VoiceGuide log file showing the details of the incoming call, the

ring timings and VoiceGuide matching them against loaded cadence templates. At the end of the

trace we can see VoiceGuide matched the cadence against the definition of ring tone, and has

added $RV[DISTINCT_RING] to that line's RV set.

Note that with Dialogic cards the cadences are matched using ring rising edge timings. In the

example below the rising edge of the second ring arrived 1200ms seconds after the rising edge of

first ring, and the 3rd ring arrived 3430ms seconds after the rising edge of the second ring. This fell

within the allowed 1st cadence of 900ms-1300ms and the allowed second cadence of 3200ms to

3600ms.

112418.28 1 ring 1

112418.28 1 ring time since last ring event (sec): 0.00

112418.28 1 rings=1, min rings before answer=4 (iCallerIdHasArrived=0)

112418.28 1 tw DialogicEvent 134,TDX_CST,0,0,0,DE_RINGS,ET_RON,

112418.28 1 event ScriptEventCode TDX_CST, code=134, state=0

112419.48 1 ring 2

112419.48 1 ring time since last ring event (sec): 1.20

112419.48 1 ring match against pattern 1, cadences=1

112419.48 1 ring template 1, cadence 1 = [110|20] edge time=1203.3

112419.48 1 ring match distinct ring pattern 1 cycle 1 ok

112419.48 1 rings=2, min rings before answer=4 (iCallerIdHasArrived=0)

112419.48 1 tw DialogicEvent 134,TDX_CST,0,0,0,DE_RINGS,ET_RON,

112419.48 1 event ScriptEventCode TDX_CST, code=134, state=0

112422.92 1 ring 3

112422.92 1 ring time since last ring event (sec): 3.43

112422.92 1 ring match against pattern 1, cadences=2

112422.92 1 ring template 1, cadence 1 = [110|20] edge time=120.3

112422.92 1 ring match distinct ring pattern 1 cycle 1 ok

112422.92 1 ring template 1, cadence 2 = [340|20] edge time=343.4

112422.92 1 ring match distinct ring pattern 1 cycle 2 ok

49

112422.92 1 ring full match ring pattern 1 (2 cadences)

112422.92 1 rv add [DISTINCT_RING]{TestPBXDoubleRing}

The ring timing marks : "ring time since last ring event" allow you to examine any new ring

types' cadences and set the Distinctive Ring definitions accordingly.

Note that with Dialogic cards the cadences are matched using ring rising edge timings, so it is not

really essential to correctly set the ON and OFF values, as long as the sum of the ON and OFF

values within the cadence matches the time to the next ring rising edge. The <OnDev> and <OffDev>

values are also summed to give the overall allowed time deviation.

50

Cisco Call Manager Configuration

The simplest way to have Cisco send calls VoiceGuide IVR system is to set up a trunk within Cisco

that routes calls directly to the IVR system.

The "Trunk type" should be set to "SIP Trunk"

The "Device Protocol" should be set to "SIP".

eg:

Then in the Trunk Configuration screen you will need to:

Select a Device Pool and set Media Resource Group List (Media Resource Group List needs to exist)

And in the SIP Information section:

In the "Destination Address" field enter the IP address of your VoiceGuide IVR server,

In the "Destination Port" field enter "5060"

In the Preferred Codec field select "711ulaw"

In the "SIP Trunk Security Profile" select "Non Secure SIP Trunk Profile"

In the "SIP Profile" select "Standard SIP Profile"

Also, it is necessary to:

Select "UDP" as the "Outgoing Transport Type" (see System > Security Profile > SIP Trunk Security

Profile menu):

51

WireShark can be used to verify that sip packets are arriving at VoiceGuide IVR server.

To filter for SIP packets specify:

sip

in the WireShark's filter text box.

52

T1/E1 ISDN Configuration

Installing and Starting Dialogic T1/E1 cards

Please refer to installation instructions supplied with your card, and contact the card supplier if you

encounter any issues starting the Dialogic service.

It is recommended that at working T1/E1 trunk is attached to the card's RJ45 port before starting

the Dialogic service. Otherwise the Dialogic service may not start. A 'loopback' connector may often

be used instead of the working T1/E1 trunk.

Selecting ISDN Protocol

The appropriate ISDN protocol in the Dialogic Configuration Manager (DCM) system needs to be

selected. After selecting the appropriate ISDN protocol, and starting the Dialogic service the system

should now be able to receive calls. Screenshot below shows where in the DCM the ISDN protocol is

set for a JCT card:

53

The telephone company or PBX/Switch adminstrators will advise which ISDN protocols are available

on the trunks they supply.

It is recommend that calls are presented on the trunk (or set of truks) in a 'round robin'/'circular'

order. This would result in the incoming calls beingevenly distributed across all available channels.

Usually the Dialogic cards are expected to be set up in 'User' mode.

Below table shows what protocol selection should be made for Dialogic JCT series cards:

 T1 ISDN Protocol Mode: User or Network ISDN Protocol in JCT

 QSIG-T1 User QTU

 QSIG-T1 Network QTN

 NI2 User NI2

 NI2 Network NT1

 4ESS User 4ESS

 4ESS Network NT1

 5ESS User 5ESS

54

 5ESS Network NT1

 DMS User DMS

 DMS Network NT1

 E1 ISDN Protocol Mode: User or Network ISDN Protocol in JCT

 NET5 (Euro-ISDN) User CTR4

 NET5 (Euro-ISDN) Network NE1

 QSIG-E1 User QTE

 QSIG-E1 Network QNT

Testing ISDN Line

The Dialogic ISDIAG.EXE application can be used to test the T1/E1 lines and obtain ISDN traces.

When using the "DMV" family cards. eg: DMV480, DMV600, etc. the Dialogic ISDNTRACE.EXE

application can be used obtain ISDN traces.

Any ISDN traces captured can be converted into readable format using Dialogic's ISDTRACE.EXE

utility.

ISDIAG

Dialogic provides theisdiag.exe command line application which will allow you to test if the ISDN

connection is functioning and can capture the ISDN layer trace as well. Isdiag.exe will only work on

'Springware' Dialogic cards, ie. 'JCT' series cards. Isdiag.exe is located in directory C:\Program

Files\Dialogic\bin

To test an E1 connection the isdiag.exe would usually be started like this at the DOS Command

Prompt:

isdiag 1 1 e s v

To test a T1 connection the isdiag.exe would usually be started like this at the DOS command

prompt:

isdiag 1 1 t s v

The examples above would allow user to receive and make calls on that first channel of first T1/E1

interface only. You will need to confirm with the Telco that they will send a call on that channel after

the ISDN D channel is restarted.

ISDN's D channel is restarted when isdiag is restarted, or when Dialogic Service is restarted.

Screenshot below shows menu displayed when isdiag is started:

55

Isdiag displays current state of ISDN trunk at top right. All the error flags should be "0".

eg. if the number under DCH is "1" this indicates a D channel error (D channel not present).

VoiceGuide should not be started when using isdiag.exe, as isdiag.exe itself opens the channel on

the ISDN trunk.

If you are unable to receive/make calls and play/record sound files with isdiag then you will need to

contact your Dialogic supplier to establish why the hardware they provided does not work on your

T1/E1 trunks. It is unlikely that VoiceGuide will work if isdiag cannot receive and make calls.

isdiag.exe can be used to capture traces of the ISDN messages as well. The log files produced by

isdiag.exe need to be converted into human-readable form by using the isdtrace.exe application.

ISDNTRACE

Dialogic provides the ISDNTRACE.EXE application which can capture a trace of the ISDN messages.

Isdntrace will only work on DM3/DMV type Dialogic cards. Isdntrace is located in Dialogic's \bin\

subdirectory.

The ISDN traces are used to confirm what ISDN parameters are sent by the Telco on that ISDN line,

and to confirm what parameters are being sent out by VoiceGuide when an outbound call is made.

The outgoing parameters should usually match what is sent by the Telco's switch.

To use isdntrace to obtain the trace of the ISDN layer messages please follow the following steps.

1. Stop VoiceGuide.

2. Restart Dialogic Service.

3. Start isdntrace using this command .

56

isdntrace -b0 -d1 -f c:\myisdnlog

4. Start VoiceGuide.

5. Make a call into VoiceGuide. Hangup after VoiceGuide answers.

6. Make a call out of VoiceGuide, loading the call using the "Outbound Call Loader".

7. After calls is ended press "q" in the isdntrace Command Prompt window to exit isdntrace.

8. Trace file would be created in C:\, name of file begins with "myisdnlog".

Configuring VoiceGuide

The channels which VoiceGuide is to use are specified in Config.xml file (see VoiceGuide's \conf\

subdirectory).

Sample Config.xml files are provided, and cover the most common deployment scenarios.

In the Config.xml file the Protocol just needs to be set to ISDN

It is recommended that all channels are opened: 23 on a T1 ISDN line, and 30 on an E1 ISDN line.

Some PBXs and Switches will not properly handle the calls unless all channels on the line are

opened.

A sample ConfigLine.xml file for use with ISDN systems is also provided. Analog system related

settings have been removed from that file, and ISDN related settings have been added in.

ISDN Outgoing Calls

Setting the ISDN protocol to the correct value is usually sufficient for outgoing calls to function as

well. Some telephone companies however have specific non-standard requirements for outgoing

calls.

This section outlines the configuration options available within VoiceGuide to allow the user to

explicitly specify the individual settings on outgoing calls.

Most of these requirements relate to the structure and the information contained within the "Setup"

message sent to the switch when a new call is made. VoiceGuide offers extensive control over the

information sent within the Setup message, allowing easy configuration of the system to match

requirements of the Telco switch or PBX.

The Setup message parameters are configurable using the ConfigLine.xml file, in section

<ConfigLine><isdn><msgSetup>.

Below is an example of what this section looks like, with the default values set.

57

<isdn>

<msgSetup>

 <defsrc>NONE</defsrc>

 <defcc>

 <cc_bc_xfer_cap>BEAR_CAP_SPEECH</cc_bc_xfer_cap>

 <cc_bc_xfer_mode>ISDN_ITM_CIRCUIT</cc_bc_xfer_mode>

 <cc_bc_xfer_rate>BEAR_RATE_64KBPS</cc_bc_xfer_rate>

 <cc_usrinfo_layer1_protocol>ISDN_UIL1_G711ULAW</cc_usrinfo_layer1_protocol>

 <cc_usr_rate>ISDN_NOTUSED</cc_usr_rate>

 <cc_destination_number_type>NAT_NUMBER</cc_destination_number_type>

 <cc_destination_number_plan>UNKNOWN_NUMB_PLAN</cc_destination_number_plan>

 <cc_destination_sub_number_type>OSI_SUB_ADDR</cc_destination_sub_number_type>

 <cc_origination_number_type>NAT_NUMBER</cc_origination_number_type>

 <cc_origination_number_plan>UNKNOWN_NUMB_PLAN</cc_origination_number_plan>

 <cc_origination_phone_number></cc_origination_phone_number>

 <cc_origination_sub_number_type>OSI_SUB_ADDR</cc_origination_sub_number_type>

 <cc_origination_sub_phone_number></cc_origination_sub_phone_number>

 <cc_facility_feature_service>ISDN_NOTUSED</cc_facility_feature_service>

 <cc_facility_coding_value>ISDN_NOTUSED</cc_facility_coding_value>

 </defcc>

 <defgc>

 <gc_destination_address></gc_destination_address>

 <gc_destination_address_type>NAT</gc_destination_address_type>

 <gc_destination_address_plan>UNKNOWN</gc_destination_address_plan>

 <gc_destination_sub_address></gc_destination_sub_address>

 <gc_destination_sub_address_type>UNKNOWN</gc_destination_sub_address_type>

 <gc_destination_sub_address_plan>UNKNOWN</gc_destination_sub_address_plan>

 <gc_origination_address></gc_origination_address>

 <gc_origination_address_type></gc_origination_address_type>

 <gc_origination_address_plan></gc_origination_address_plan>

 <gc_origination_sub_address></gc_origination_sub_address>

 <gc_origination_sub_address_type></gc_origination_sub_address_type>

 <gc_origination_sub_address_plan></gc_origination_sub_address_plan>

 <gc_chan_info_medium_id>1</gc_chan_info_medium_id>

 <gc_chan_info_medium_sel>MEDIUM_PREF</gc_chan_info_medium_sel>

 <gc_call_info_category>SUB_NOPRIOR</gc_call_info_category>

 <gc_call_info_address_info>ENBLOC</gc_call_info_address_info>

 <gc_ext_data></gc_ext_data>

 </defgc>

</msgSetup>

</isdn>

58

The <defsrc> setting selects whether the "CC" or "GC" approach (or neither) will be used to

configure Setup message. Both approaches set almost the same information, but some Dialogic

cards require the use of CC approach and some require the GC approach, which is why the option

to use one or the other is offered. Setting the <defsrc> filed to NONE should always be tried first.

This will result in the default settings for the selected ISDN protocol being used - the protocol set in

Dialogic's Configuration Manager (DCM).

The DM3/DMV series cards can only use the "GC" setting parameters.

Settings used for individual fields within the <ConfigLine><isdn><msgSetup> section are detailed

below:

Valid Settings

Field Values

defsrc CC, GC, NONE

cc_bc_xfer_cap BEAR_CAP_SPEECH, BEAR_CAP_UNREST_DIG, BEAR_REST_DIG

cc_bc_xfer_mod

e
ISDN_ITM_CIRCUIT

cc_bc_xfer_rat

e

BEAR_RATE_64KBPS, BEAR_RATE_128KBPS, BEAR_RATE_384KBPS, BEAR_RATE_1536KBPS,

BEAR_RATE_1920KBPS, PACKET_TRANSFER_MODE

cc_usrinfo_lay

er1_protocol

SDN_UIL1_CCITTV.110, ISDN_UIL1_G711ULAW, ISDN_UIL1_G711ALAW,

ISDN_UIL1_G711ADPCM, ISDN_UIL1_G722G725, ISDN_UIL1_H261,

ISDN_UIL1_NONCCITT, ISDN_UIL1_CCITTV120, ISDN_UIL1_CCITTX31

cc_usr_rate ISDN_UR_EINI460, ISDN_UR_56000, ISDN_UR_64000, ISDN_UR_134, ISDN_UR_12000

cc_destination

_number_type
EN_BLOC_NUMBER, INTL_NUMBER, NAT_NUMBER, LOC_NUMBER, OVERLAP_NUMBER

cc_destination

_number_plan
UNKNOWN_NUMB_PLAN, ISDN_NUMB_PLAN, TELEPHONY_NUMB_PLAN, PRIVATE_NUMB_PLAN

cc_destination

_sub_number_ty

pe

OSI_SUB_ADDR, USER_SPECIFIED_SUB_ADDR, IA_5_FORMAT

cc_origination

_number_type
EN_BLOC_NUMBER, INTL_NUMBER, NAT_NUMBER, LOC_NUMBER, OVERLAP_NUMBER

cc_origination

_number_plan
UNKNOWN_NUMB_PLAN, ISDN_NUMB_PLAN, TELEPHONY_NUMB_PLAN, PRIVATE_NUMB_PLAN

cc_origination

_phone_number

Default CallerID phone number for outgoing calls made using this channel

can be specified here.

cc_origination

_sub_number_ty

pe

OSI_SUB_ADDR, USER_SPECIFIED_SUB_ADDR, IA_5_FORMAT

cc_origination

_sub_phone_num

ber

Default CallerID phone sub-number for outgoing calls made using this

channel can be specified here

cc_facility_fe

ature_service
ISDN_NOTUSED, ISDN_FEATURE, ISDN_SERVICE

cc_facility_co

ding_value

ISDN_CPN_PREF, ISDN_SDN, ISDN_BN_PREF, ISDN_ACCUNET, ISDN_LONG_DIS,

ISDN_INT_800, ISDN_CA_TSC, ISDN_ATT_MULTIQ

gc_destination TRANSPARENT, NAT, INTL, LOC, IP, URL, DOMAIN, EMAIL

59

_address_type

gc_destination

_address_plan
UNKNOWN, ISDN, TELEPHONY, PRIVATE

gc_destination

_sub_address_t

ype

UNKNOWN, OSI, USER, IA5

gc_destination

_sub_address_p

lan

UNKNOWN

gc_origination

_address

Default CallerID phone number for outgoing calls made using this channel

can be specified here.

gc_origination

_address_type
TRANSPARENT, NAT, INTL, LOC, IP, URL, DOMAIN, EMAIL

gc_origination

_address_plan
UNKNOWN, ISDN, TELEPHONY, PRIVATE

gc_origination

_sub_address

Default CallerID phone sub-number for outgoing calls made using this

channel can be specified here.

gc_origination

_sub_address_t

ype

UNKNOWN, OSI, USER, IA5

gc_origination

_sub_address_p

lan

UNKNOWN

gc_chan_info_m

edium_id
Specifies the timeslot to be connected.

gc_chan_info_m

edium_sel
MEDIUM_PREF, MEDIUM_EXCL

gc_call_info_c

ategory

SUB_NOPRIOR, SUB_PRIOR, MAINT_EQUIP, COIN_BOX, OPERATOR, DATA, CPTP,

SPECIAL, MOBILE, VPN

gc_call_info_a

ddress_info
ENBLOC, OVERLAP

VoiceGuide ISDN Tracing

VoiceGuide can also initiate a trace the ISDN D-channel messages.

A file titled ktTelControl_TraceSelect.txt needs to be placed in "C:\" with the contents of the file

indicating which Dialogic's board D-channel is to be traced.

Example contents should be:

isdn_trace_dtiB1

which indicates which interface board should have it's D-channel traced.

VoiceGuide will create the traces in "C:\", with the trace files named in this format:

isdn_trace_dtiB1_0325_203334.log

Traces can be converted into readable format using Dialogic's ISDTRACE.EXE utility.

60

T1/E1 RobbedBit/CAS/R2 Configuration

Installing and Starting the Dialogic T1/E1 cards

Please refer to installation instructions supplied with your card, and contact eh card supplier if you

encounter any issues starting the Dialogic service.

It is recommended that at working T1/E1 trunk is attached to the card's RJ45 port before starting

the Dialogic service. Otherwise the Dialogic service may not start. A 'loopback' connector may often

be used instead of the working T1/E1 trunk.

JCT series Dialogic cards

To configure the Dialogic "JCT" series T1/E1 cards to work with a Robbed Bit or CAS or R2 type line

the following steps must be taken:

1.The Parameter File must be specified in the Dialogic Configuration Manager.

2.Config.xml file must have the correct protocol specified in the <Protocol> field.

3.Optionally Dialogic's spandti.prm and voice.prm configuration files may need to be edited

Screenshot below shows where in the DCM the Parameter File is set:

61

The example screenshot above shows the r2_300.prm file being used on the E1 line.

A common setting for the T1 Robbed Bit lines is us_240.prm

More information on the various configuration options which can be used to configure the "JCT"

series cards can be found in this Dialogic help file: springware_config_win_v1.pdf

DMV series Dialogic cards

To configure the Dialogic "DMV" series T1/E1 cards to work with a Robbed Bit or CAS or R2 type line

the protocol family is chosen in the "Trunk Configuration" tab in the Dialogic's Configuration

Manager.

The specific protocol (eg:pdk_us_mf_io) is the specified in the VoiceGuide's Config.xml file, in the

<Protocol> field.

More information on the various configuration options which can be used to configure the "DMV"

series cards can be found in this Dialogic help file: dm3_pci_config_win_v1.pdf

62

Information on the various diagnostics programs which can be used to debug the DMV cards'

operation can be found in this Dialogic help file: dm3_diagnostics_win_v7.pdf

Configuring VoiceGuide

The channels which VoiceGuide is to use are specified in Config.xml file (see VoiceGuide's \conf\

subdirectory).

Sample Config.xml files are provided, and cover the most common deployment scenarios.

In the Config.xml file the Protocol files needs also needs to be set to the Dialogic protocol file which

has been designed to work with the type of protocol used on the line. Common setting is

pdk_us_mf_io for T1 Robbed Bit lines. The protocol .cdp files can be edited to change the Dialogic

card behavior. Refer to Dialogic documentation for information on .cdp file structure and their fields.

63

VoIP Line Registration

VoiceGuide can register itself with the SIP provider of choice, resulting in VoiceGuide receiving calls

directed to registered telephone numbers and being able to place outgoing calls using the

registered accounts.

The VoIP registrations are specified in the Config.xml file, in section <VoIP_Lines>

<VoIP_Lines> contains two sections: <VoIP_Registrations> and <VoIP_Authentications>.

<VoIP_Registrations> can contain multiple <VoIP_Registration> sections, and

<VoIP_Authentications> can contain multiple <VoIP_Authentication> sections.

Section <VoIP_Registration>:

<VoIP_Registration>

<Protocol>SIP</Protocol>

<RegServer>ServerAddress</RegServer>

<RegClient>RegisteredClient</RegClient>

<LocalAlias>LocalAlias</LocalAlias>

</VoIP_Registration>

<Protocol> Leave as SIP

<RegServer>
IP address of the registration server or the domain name of the registration server. If
domain name is specified then HMP will resolve the domain name to IP address
before issuing the registration request.

<RegClient>

Client name is usually specified as: AuthUsername@Realm or

AuthUsername@RegServer

Value of RegClient is sent in the From: and the To: fields of SIP

Register messages.

<LocalAlias>
Any string is OK here. Value of LocalAlias is used in the Contact: field of SIP

Register messages.

<VoIP_Authentication> holds information about the SIP digest authentication. It contains:

<VoIP_Authentication>

<Realm>Domain</Realm>

<Identity>AccountName</Identity>

<AuthUsername>AuthUser</AuthUsername>

<AuthPassword>AuthPassword</AuthPassword>

</VoIP_Authentication>

<Realm>

The 'realm' for which this authentication applies.
It is recommended that this field be left blank, unless you are registering with
multiple SIP servers. If registering with multiple servers then the "realm" used by the
SIP server should be specified here. WireShark can be used to view 401/407/etc
response contents to see realm setting in those responses.

<Identity>

Account for which this authentication applies.
It is recommended that this field be left blank, unless you are registering multiple
accounts/trunks and require a different authentication to be used for each account/
trunk. If specified then this authentication entry will only be used if the Identity

matches the To: field contents in the 401 or 407 response from the registration

64

server. This field usually is in this format: sip:1010@10.1.1.11

<AuthUsername> Username used for authentication.

<AuthPassword> Password used for authentication.

The Dialogic HMP service must also be restarted after any changes to <VoIP_Registration> or

<VoIP_Authentication> entries. This is necessary to clear the old Registration/Authentication

entries that have been previously loaded into HMP.

WireShark can be used to confirm what SIP packets are exchanged between the SIP server and the

VoiceGuide/HMP system. WireShark traces are usually necessary in determining causes of any

registration failures.

SIP registration and authentication examples can be found in the Config.xml file. Information used

for SIP registration is very simiar for all SIP switches/providers.

Below are some examples as well:

CallCentric (www.callcentric.com)

<VoIP_Lines>

<VoIP_Registrations>

<VoIP_Registration>

 <Protocol>SIP</Protocol>

 <RegServer>callcentric.com</RegServer>

 <RegClient>177711111111@callcentric.com</RegClient>

 <LocalAlias>177711111111@10.1.1.9</LocalAlias>

</VoIP_Registration>

</VoIP_Registrations>

<VoIP_Authentications>

<VoIP_Authentication>

 <Realm></Realm>

 <Identity></Identity>

 <AuthUsername>177711111111</AuthUsername>

 <AuthPassword>Password</AuthPassword>

</VoIP_Authentication>

</VoIP_Authentications>

</VoIP_Lines>

Asterisk

The registration config below demonstrates how VoiceGuide would register to accept calls to a

particular Asterisk extension (ext 3000).

65

Asterisk was installed on another server. Asterisk server's IP address was: 10.1.1.11 VoiceGuide is

installed on IP address 10.1.1.9

<VoIP_Lines>

<VoIP_Registrations>

<VoIP_Registration>

<Protocol>SIP</Protocol>

<RegServer>10.1.1.11</RegServer>

<RegClient>1010@10.1.1.11</RegClient>

<LocalAlias>sip:1010@10.1.1.9:5060</LocalAlias>

</VoIP_Registration>

</VoIP_Registrations>

<VoIP_Authentications>

<VoIP_Authentication>

<Realm></Realm>

<Identity></Identity>

<AuthUsername>3000</AuthUsername>

<AuthPassword>1234</AuthPassword>

</VoIP_Authentication>

</VoIP_Authentications>

</VoIP_Lines>

FreeSWITCH

The registration config below demonstrates how VoiceGuide would register to accept calls to a

particular FreeSWITCH extension (ext 1010).

FreeSWITCH was installed on another server. FreeSWITCH server's IP address was: 10.1.1.11

Note that this is all that is required to allow multiple calls to extension 1010 to be all sent to

VoiceGuide at the same time. The number of actual calls handled will only be limited by the number

of VoiceGuide lines, so for example a 20 line VoiceGuide system still requires only one extension to

be registered with the VoIP switch.

FreeSWITCH will send all calls to extension 1010 to VoiceGuide, regardless of how many ext 1010

calls VoiceGuide is currently handling.

You can of course register multiple extensions if you want VoiceGuide to run different services

depending on which extension was called.

<VoIP_Lines>

<VoIP_Registrations>

<VoIP_Registration>

<Protocol>SIP</Protocol>

<RegServer>10.1.1.11</RegServer>

66

<RegClient>1010@10.1.1.11</RegClient>

<LocalAlias>1010@10.1.1.9</LocalAlias>

</VoIP_Registration>

</VoIP_Registrations>

<VoIP_Authentications>

<VoIP_Authentication>

<Realm></Realm>

<Identity></Identity>

<AuthUsername>1010</AuthUsername>

<AuthPassword>1234</AuthPassword>

</VoIP_Authentication>

</VoIP_Authentications>

</VoIP_Lines>

Skype Connect

<VoIP_Lines>

<VoIP_Registrations>

<VoIP_Registration>

 <Protocol>SIP</Protocol>

 <RegServer>sip.skype.com</RegServer>

 <RegClient>99051000000000@sip.skype.com</RegClient>

 <LocalAlias>99051000000000@sip.skype.com</LocalAlias>

</VoIP_Registration>

</VoIP_Registrations>

<VoIP_Authentications>

<VoIP_Authentication>

 <Realm></Realm>

 <Identity></Identity>

 <AuthUsername>99051000000000@</AuthUsername>

 <AuthPassword>Password</AuthPassword>

</VoIP_Authentication>

</VoIP_Authentications>

</VoIP_Lines>

BroadSoft

Many SIP providers use BroadSoft's platform.

<VoIP_Lines>

67

<VoIP_Registrations>

<VoIP_Registration>

 <Protocol>SIP</Protocol>

 <RegServer>sip.NSW.iinet.net.au</RegServer>

 <RegClient>0299998888@sip.NSW.iinet.net.au</RegClient>

 <LocalAlias>0299998888@10.1.1.9</LocalAlias>

</VoIP_Registration>

</VoIP_Registrations>

<VoIP_Authentications>

<VoIP_Authentication>

 <Realm></Realm>

 <Identity></Identity>

 <AuthUsername>0299998888</AuthUsername>

 <AuthPassword>Password</AuthPassword>

</VoIP_Authentication>

</VoIP_Authentications>

</VoIP_Lines>

68

Command Line Options

VoiceGuide v7.x runs as a Windows Service only. This section only applies to v5.x and v6.x of

VoiceGuide.

-icon : Will minimize the application to the system tray

-hide : Will hide the main application window

-min : Will minimize the window to the taskbar

Script Designer

The filename of the script to be edited can be passed as a parameter on the command line

69

Registering VoiceGuide

VoiceGuide can be registered using online order form at www.VoiceGuide.com

You may also register by filling out the form below and forwarding it to sales@voiceguide.com.

After your registration has been processed you will receive by e-mail or Fax your own personalized

License Key which will register your copy of VoiceGuide.

Name: ___

Company: __

Address1: __

Address2: __

City/state: ___

Country: ___

Telephone: _____________________ Fax:______________________

E-Mail: ___

Required: VoiceGuide Unique Identifier : ______________________

License Type: ______________________________

License Price (as listed on www.VoiceGuide.com) : ______________

Payment can be made by Visa, Mastercard, PayPal or Bank Transfer.

Cardholders Name: ___

Credit Card Number: ___

Credit Card Expiry Date: ______________________________________

Cardholders Signature:__

Comments: ___

http://www.voiceguide.com/
http://www.voiceguide.com/

70

71

Unique Identifier

The Unique ID is based on either the Dialogic card serial number, or the Network adapters MAC

address.

VoiceGuide v7

To find out the 'Unique ID' for the system go to Start -> Program Files -> VoiceGuide menu and start

the License Manager, which will display the Unique ID.

The Dialogic service must be started before starting the License Manager in order for the Unique ID

to show.

If Dialogic card is used the VoiceGuide v7 license will be linked to the Dialogic card, and the license

will work when that Dialogic card is present in the system.

If moving software to new system the licensed Dialogic card needs to be moved to new system as

well.

For VoIP deployments that do not use a Dialogic card the VoiceGuide v7 license will be linked to the

network adapter, and the license will work when that network adapter is used for VoIP

communication.

For VoIP deployments it is recommended that a PCIe based network card is used for VoIP

communication, and any motherboard based network interfaces are disabled.

If moving software to new system the licensed network card needs to be moved to new system as

well.

VoiceGuide v6 and v5

72

To find out the Unique ID for the system go to the Help menu and select 'Register VoiceGuide'

option:

The registration screen will then appear with the various Unique IDs showing:

5 digit Unique IDs beginning with a letter 'M' are linked to the Network Card.

5 digit Unique IDs beginning with a letter 'H' are linked to the Hard Disk.

8 digit Unique IDs are linked to the Dialogic card.

In the example screenshot above, three Unique IDs are shown on the registration screen: M0932,

MBD56 and FD060112. The first two Unique IDs are based on network cards in the system and the

third one is based on the Dialogic card in the system.

For systems which use a Dialogic card it is recommended to link the license to the Dialogic card. This

will allow the VoiceGuide license to be used in the new system that Dialogic card is moved to.

For systems which do not use a Dialogic card and where the ability to easily move the license from

one machine to another is required it is recommended that a PCIe based network adapter is used

(or a 'USB to Ethernet' network adapter). Moving the adapter to new system will allow license to

work on the new system.

For older systems where license was issued linked to an on-board network adapter which cannot

be moved to a new system a new registration code will be issued. Please contact

sales@voiceguide.com

mailto:sales@voiceguide.com

73

NB: There are no letters 'O' in any of the Unique IDs - if it looks like a zero then it is a zero.

74

Introduction

A Script specifies what the system is to do when an incoming call arrives, or an oputgoing call is

answered.

VoiceGuide provides a Graphical Script Designer to simplify script design and allow easy modification

of existring scripts.

For example, to play a sound file, and then play a different file depending on which key the

customer has pressed the script would look like this:

The modules above all play different sound files. There are other modules which perform other

actions. eg: ask for caller's input, record sound files, interact with databases, interact with web

services, run other programs, act as voicemail boxes, and more.

To create a system which you need is as simple as drag-and-dropping the modules which do the

actions that you need on the screen and then specifying what events and actions result in Script

taking caller from one module to another.

75

Graphical Design Environment

VoiceGuide's Graphical Script Designer allows creation of the IVR callflow by drag-and-dropping the

function modules onto the screen and specifying how the caller will be taken through the script by

editing the properties of each module.

NOTE: The script designer will not work under 'Aero' themes used by Windows7/Win2008/Vista. The

workaround is to use 'Windows Basic' or 'Windows Classic' themes, or select 'Disable desktop

composition' from vgScriptDesigner.exe's "Right Click->Properties->Compatibility" tab.

An example below shows a simple script being edited.

Adding new modules

The toolbar on the side of the window is used to select what modules to add to the script. To add

a module select the module type to add, and then click on the script's workspace. To stop adding

modules select the 'arrow' button.

76

Deleting modules

Select the module to delete and press the button.

Creating paths between modules

Select the start module and press the 'Properties' button located in the top right corner of the

module. This will bring up the module's Properties pages. The path options are set in the text box

on the Paths tab of the Properetoies window. For more instructions on creating paths please click

here.

Running scripts

If the edited script is currently used by VoiceGuide then just saving the script will result in

VoiceGuide using the new version of the script for any new calls arriving on the lines on which that

script is active.

77

Module Types

VoiceGuide scripts can be put together using a variety of function modules:

Play Sound File

Record Sound File

Get Number

Say Number

Transfer Call

 Make Call

 Web Service

 Send Email

Database Query

 Run Program

 Time Switch

Evaluate Expression

 Run VB Script

 Hangup Call

VoiceGuide Voicemail system can be accessed from anywhere in the VoiceGuide scripts. Callers can

be directed to various parts of the Voicemail system, depending on whether they want to leave

messages, listen to the messages in their mailbox, or just browse through the Voicemail boxes on

the system.

Record a message for a particular Voicemail box

Access the messages in a particular Voicemail
box

Browse through the Voicemail system, leaving
messages in various Voicemail boxes

78

Paths

Paths is the name given to the transitions between the Script Modules.

Creating new paths

To create a new path, press the Properties button on the module from which the path will start,

and go to the Paths tab.

Paths are specified using the format:

On {Trigger} Goto [Module Title]

The text in the Paths window can be edited directly, or you can use the Add New Path help frame.

Selection Paths

Taken when caller has made a matching selection. This can be a keypress or a series of keypresses,

a keyword or phrase recognised by the Speech Recogntion system, matching data retrieved from

databse or web service, or data returned by external program or VBScript/JavaScript etc.

Timeout Paths

A Timeout path will be taken if a caller has not made a selection within the specified number of

seconds. A Timeout path with a wait time of zero seconds will be taken immediately after the last

79

sound file in the module has completed playing.

Paths to Voicemail System

Paths can direct the caller to a Voicemail Box, Voicemail Box Menu or Voicemail Retrieve Menu, eg:

When specifying the Voicemail Box as the destination, the Voicemail Box number must be specified

as well. make sure that the Voicemail Box specified exists and has been configured using the

Voicemail System Manager.

Returning from the Voicemail system

If you would like the caller to go to a certain module after returning from the Voicemail system then

you can specify a return module. The Path definition needs to be:

On {Trigger} Goto [Voicemail System Module] Return [Module Title]

Eg: if after Retrieving Voicemail the caller should be sent to the main menu again, the path will look

like this:

80

If the titles of the modules are too long to fit on one line, the path description will wrap around to

the following lines. This is OK.

Branching to other scripts and calling subscrips.

The Enterprise and Evaluation versions of VoiceGuide can call subscripts.

To branch (goto) to a script you can specify a path like this:

on {event} goto [script filename|module name]

eg:

on {1} goto [c:\scripts\myscript.vgs|PlayWelcome]

To run a subscript (gosub) to a script you can specify a path:

on {event} gosub [script filename|module name]

eg:

on {1} gosub [c:\scripts\myscript.vgs|PlayWelcome]

The script name or the module name can be left blank. If the Script Filename is left blank then the

current script is assumed, and if the Module Name is left blank then the default starting module in the

script is used.

eg: on {1} gosub [|PlayWelcome]

on {1} gosub [c:\scripts\myscript.vgs|]

81

If the [|module name] notation is used the path to the destination module will not be drawn. This

notation can be used to visually de-clutter highly linked scripts.

If "|" is omitted from the destination specification then the destination name is assumed to be just

a module in the current script. So for example this path will not work:

on {1} gosub [c:\scripts\myscript.vgs]

To specify what module should be the next module once the subscript returns the "return" path

option should be used. If the "return" path option is not used when the subscript returns then

VoiceGuide will start running the default start module in the returned to script.

To specify a return module:

on {event} gosub [script filename|module name] return [return script filename|return

module name]

eg:

on {1} gosub [c:\scripts\admin.vgs|GetUserPin] return [c:\TakeOrder.vgs|MainMenu]

The Return To script can be a different script. The return script filename can be omitted if you would

like the subscript to return to the same script.

To return from a subscript use a path like this in the subscript:

on {event} return

eg: on {4} return

The various goto/gosub/return paths are briefly demonstrated in the sample scripts in

VoiceGuide's \scripts\more sample scripts\paths directory.

Subscripts using COM/WCF interface.

Please see the VoiceGuide COM/WCF Reference section in this Help file for information on how the

goto/gosub/return commands can be issued to VoiceGuide from external applications.

82

Result Variables

Result Variables store information on activity in each module during the call.

These Result Variables ($RVs) can then be used later in the VoiceGuide script, allowing the

VoiceGuide script to act based on the information in the previously set $RVs.

Result Variables can also be accessed and created/set by external systems, using VoiceGuide's

COM/WCF/REST/etc interfaces. This is one of the mechanisms by which external systems can directly

monitor and control the progress of the VoiceGuide script in real-time.

Please refer to each module's reference for more information on $RVs created by that module.

VoiceGuide vgEngine trace files also contain details of all created/set $RVs.

Often Used Result Variables :

$RV[module title]

Used to access the 'main' information saved by a particular module. eg:

Module Type Result Variable will contain

Play The key pressed by the caller

Get Number Sequence
The number entered by the
caller

Record The last recorded filename.

All modules create more then one Result Variable. Please see documentation for each module type

and the vgEngine trace file to see what $RVs are created by each module.

The module Result Variables are created for the duration of the call, and all modules running on that

line during the call will be able to access them. Even if the script jumps to another script then the

next script will still be able to access the Result Variables created by any previous script during

current call.

$RV_CIDNAME

Caller's Name (if available). Can be used in Evaluate Expression modules to switch to different

areas on the script based on who is the caller.

On traditional analog telephone lines the Caller ID information is often sent between the first and

the second Ring. Hence it is usually necessary to set analog systems to answer after the second

Ring if this Result Variable is to carry any information. On ISDN and VoIP systems Caller ID is

provided at beginning of the call.

$RV_CIDNUMBER

Caller's Telephone Number (if available). Can be used in Evaluate Expression modules to switch to

different areas on the script based on who is the caller.

83

On analog telephone systems the Caller ID information is often sent between the first and the

second Ring. Hence it is usually necessary to set analog systems to answer after the second Ring if

this Result Variable is to carry any information. On ISDN and VoIP systems Caller ID is provided at

beginning of the call.

$RV_DNIS

Telephone number called by the caller. This information is usually only provided on ISDN lines, and is

usually used when multiple numbers are terminated the the T1/E1 ISDN line. Using $RV_DNIS the

system can then determine which script it should be starting for the call.

$RV_LINEID

Identification number of the line device which is handling this call. Can be used in Run Program

module to help the called program generate the appropriate Results filename, or in the COM

interface to return results to the correct line. The ID number refers to an internal line ID number -

not the position in which that line's status is displayed in VoiceGuide's status window.

$RV_PORTNUMBER

Line Device's position is VoiceGuide's line status listing. Numbering starts from the top, with first

line/port having a $RV_PORTNUMBER of 1, the seconds line/port having a $RV_PORTNUMBER of 2,

etc.

$RV_STARTTIME

The Date and Time the call was started. The 'Medium' Date format and the 'Long' Time format is

used. These formats can be set in the Windows' Control Panel - Regional Settings applet.

$RV_CALLLENGTH

Number of seconds since the call started. This variable can be used to limit the length of time callers

spend using the system.

$RV_LINESINUSE

Number of lines on system currently busy taking calls.

$RV_LIC_LINES

Number of lines system is licensed for.

$RV_LIC_TYPE

Professional, Professional+Dialer, Enterprise or Enterprise+Dialer

$RV_SOFT_VERSION

Version number of software running.

84

$RV_RINGCOUNT

Number of rings an incoming call has rung so far. This variable can be used to determine at which

point to answer the call if the script was started with the "Start the script before answering the

call" option.

$RV_DIALEDNUMBER

If the call is an outbound call this variable stores the telephone number which was dialed.

$RV_LastKeyPress

Last Key that was pressed, or “timeout” if a timeout event fired.

$RV_PreviousModule

Title of the previous module, ie: from which module the script arrived at the current module.

$RV_EventListXml

Significant events which occurred during the call along with the times when those events occurred.

This information is usually used in in system usability analysis.

$RV_CALLSTATE

Current state of call.

$RV_STATUSDISPLAYED

What is currently displayed in the Line Status Monitor.

$RV[RUNAFTERHANGUP]

The filename of the script ran when the caller hangs up. This filename can be set in the Evaluate

Expression module. Setting of $RV[RUNAFTERHANGUP] is only valid during the current script. This

"OnHangup Script" setting is wiped whenever a goto/gosub is made to another script, and the new

script's "OnHanup Script" setting is used.

$RV[module title_RowCount]

$RV[module title_ColumnIndex_RowIndex]

Please see the Database Query module for more information on the two Result Variables above.

$RV_PathScript

The path to the location where the script is located. Does not include the "\" at the end.

$RV_PathVoiceGuide

85

The path to the location where the VoiceGuide application is located. Does not include the "\" at the

end.

$RV[VoicemailMessage]

$RV[VoicemailMessageXXXX]

The last recorded voicemail message during this call.

$RV[VoicemailMessage] returns the filename of the last recorded voicemail message regardless of in

which voicemail box it was recorded.

$RV[VoicemailMessageXXXX] returns the filename of the last recorded voicemail message in a

particular voicemail box - which is specified by replacing XXXX with the number of the voicemail box.

The message must be recorded during the current call for them to be accessible using these Result

Variables.

$RV[VmbId]

ID of the last voicemail box that was accessed (either logged into or message left for).

Outbound dialing related Result Variables

$RV[OutDial_RetriesLeft]

Number of retries left for an outgoing call. If this is the last call attempt then this RV will have a

value of 0.

$RV[OutDial_Result]

When the outgoing call has been answered or the number of retries has been used up this RV

stores the type of outcome. Possible values are: Contacted_Human, Contacted_AM

Contacted_Pager, Contacted_Fax, Uncontactable_OnDontDialList, SIT_Reorder, SIT_NoCircuit,

SIT_CustIrReg, SIT_Unknown, SIT_Unavailable, Uncontactable_NoAnswer

$RV[AmWelcMsg_RecLen100ms]

Length of Answering Machine message. in 100ms units. eg: a value of 40 would indicate answering

machine message was 4 seconds long.

Conference & Call Transfers related Result Variables

$RV[Conf_DevName_X]

The device name of party X in a conference call. eg: $RV[Conf_DevName_2] would be the

device name of device carrying the 2nd leg of a call in the "Dial and

86

Conference" call.

$RV[Conf_LineID_X]

The Line number of party X in a conference call. eg: $RV[Conf_LineId_2] would be

the Line ID number of device carrying the 2nd leg of a call in the "Dial and Conference"

call.

Script Branching (Goto/Gosub/Return) related Result Variables

These RVs are set when a Goto or Gosub branch is made to another script. The names are

fairly self explanatory:

$RV[ScriptEnd_Time]

$RV[ScriptEnd_Goto_Script]

$RV[ScriptEnd_Goto_Module]

$RV[ScriptStart_Time]

$RV[ScriptStart_CalledFrom_Script]

$RV[ScriptStart_CalledFrom_Module]

Current Date/Time Result Variables

$RV_WEEKDAY

Takes on a value between 1 and 7, depending on what day it is. 1 is a Monday and 7 is

a Sunday. Can be used in Evaluate Expression modules to allow you to switch to

different areas on the script depending on the day of the week.

$RV_DD

Takes on a 2 digit value between "01" and "31", depending on what day of the month it

is. Can be used in Evaluate Expression modules to allow you to switch to different

areas on the script depending on what day of the month it is.

$RV_MM

Takes on a 2 digit value between "01" and "12", depending on what month it is. Can be

used in Evaluate Expression modules to allow you to switch to different areas on the

script depending on the current month.

$RV_YY

Takes on a 2 digit value of current year (eg: "03"). Can be used in Evaluate

87

Expression modules to allow you to switch to different areas on the script depending

on the current year.

$RV_HH

Takes on a 2 digit value between "00" and "23", indicating the hour of the current

time. Can be used in Evaluate Expression modules to allow you to switch to different

areas on the script depending on the time of day.

$RV_NN

Takes on a 2 digit value between "00" and "59", indicating the minute of the current

time. Can be used in Evaluate Expression modules to allow you to switch to different

areas on the script depending on the time of day.

$RV_SS

Takes on a value between "00" and "59", indicating the second of the current time. Can

be used in Evaluate Expression modules to allow you to switch to different areas on

the script depending on the time of day.

$RV_MS

Takes on a value between "000" and "999", depending on the millisecond fraction of the

current time.

Other Time Related RVs

The following $RVs are also available. They are pretty self-explanatory:

$RV_MONTHNAME, $RV_HOUR, $RV_MINUTE, $RV_SECOND, $RV_TimeStamp_Long,

$RV_TimeStamp_Short, $RV_DateStamp_Long, $RV_DateStamp_Short $RV_MONTH, $RV_YEAR,

$RV_DATE

eg. use this expression to create a date and time 'timestamp' :

RV_YYRV_MMRV_DDRV_HHRV_NNRV_SS.$RV_MS

Where can Result Variables be used

$RVs can be used anywhere in the VoiceGuide script. eg:

Specifying the 'trigger' and the destination modules in Paths leaving a module,

Filenames of sound files which are to be played or recorded,

What digits/dates/amounts are to be spoken to the caller in the Say Number module,

Looking up information in a database,

As parameters when calling other programs, web services, etc.

88

Evaluate Expression modules,

Send Email module: in destination Email address, Title, Message Body and Attachment

Filename.

Global RVs

Global RV can be preset in VG.INI, in section [Scripts], using an expression that

lists multiple RVs on one line, like this:

GlobalRV=[MyValue1]{23}[SomeOption]{yes}[SomeEmail]{admin@xyz.com}

These RVs will then be loaded and set when the VoiceGudie service starts and can be

used in scripts. eg. If using example above then $RV[SomeOption] can be used in the

scripts.

Notes

If a Result Variable is used in the script that has not yet been defined, it will be

replaced with nothing (an empty string), not a digit zero.

Eg: If you use expression: C:\SoundFiles\Info$RV[InfoNumber].wav and the script has

not yet defined $RV[InfoNumber] then the resulting string after the Result Variables

are replaced will be: C:\SoundFiles\Info.wav

If $RV are used in Evaluate Exprressions module's comparison expressions it is usually

best to use quotes around the RVs which may be empty.

Also, quotes should be used when using RVs in a VBScript in situations where

replacement with an empty string could potentially lead to syntax errors unless quotes

have been used.

89

Call Start

It is sometimes desirable to carry out some processing before the call is answered. Quite often the

purpose of this processing is to determine whether the call should be answered or not.

VoiceGuide script can be configured to start running without answering the telephone line. This

allows VoiceGuide to conduct any database or web service lookups etc. based on provided CallerID

in order to determine how the call should be handled.

To select this option use the "Script Properties" menu entry from the "Edit" menu in the Graphical

Design Environment, then check the "Start the script without answering call" box.

For a given script to answer all incoming calls leave the "Start the script without answering call" box

unchecked (this is the default setting for each new script).

Modules allowed before the call is answered

Any modules that do not need to play a sound file can be used. eg:

Database Query

Web Service Call

Time Switch

Evaluate Expression

Run Program

Send Email

90

Make Call

Run VB Script

 Hangup the Call

Arriving at the "Hangup Call" module results in the script finishing and the call never being

answered.

Answering the call

Calling any module which plays or records a sound file or transfers the call will result in a call being

answered.

Reaching the following modules in the script will effectively answer the call:

Play Sound File

Record Sound File

Get Number

Say Number

Transfer Call

91

Call Finish

It is sometimes desirable to perform some functions at the time when the call finishes, regardless of

at which point in the script the call ended. Usually such a script will perform 'clean-up' type

operations like database updates, call other programs, send out emails or schedule outbound calls.

VoiceGuide can be instructed to run a separate script when the call has finished using the "Script

Properties" option from the "Edit" menu in the Graphical Design Environment.

Below shows the script "C:\My Scripts\Update Databases.vgs" is to be called when the currently

edited script is finished:

Modules allowed in the Cleanup/OnHangup script

Only certain types of modules can be used in a Cleanup script. As the call has already ended,

modules which play or record sound files or expect user input cannot be used.

The following modules can be used:

Database Query

Web Service Call

Time Switch

Evaluate Expression

 Run Program

 Send Email

92

 Make Call

 Run VB Script

 Hangup

Changing the Cleanup/OnHangup script at runtime

It is sometimes desirable to change the Cleanup script depending on user selections or other

factors. To change the script we need to assign the new filename to the $RV[RUNAFTERHANGUP]

Result Variable. The Evaluate Expression module can be used to do this:

Result Variables

All Result Variables from the script which was handling the call are available to the 'Cleanup' script.

This allows all information entered by caller or retrieved/created by the original script to be used in

the call cleanup script.

93

Multilanguage Systems

When implementing multi-language systems:

Script prompts need to be recorded in multiple languages.

If using any of VoiceGuide's pre-recorded system prompts in your script, then a new set of

system prompts needs to be recorded in the new language as well.

Script Sound Files

Usually towards the beginning of the script a following module would be used:

The user selection would then be available by using the $RV[Get Language] Result Variable.

You can use this result variable to select the right language version of the file you will want to play

in the rest of the script.

eg:

C:\MyScripts\Intro_$RV[Get Language].wav

Would be translated by VoiceGuide to indicate either Intro_1.wav, Intro_2.wav or Intro_3.wav,

where the three files are recorded in English, Spanish and French respectively.

This approach allows you to use a single script for a number of languages, saving you the need to

duplicate the scripts.

94

VoiceGuide System Sound Files

VoiceGuide's default system sound files are stored in the VoiceGuide’s "\system\voice\"

subdirectory.

To select a different set of system files to be used for the current call, the path pointing to the new

system directory current for this call needs to be written to the $RV[DIRSYSTEMVOICE] Result

Variable.

The path has to be written in double quotes. Note that only DIRSYSTEMVOICE is specified in the

"Assign to Result Variable" text box, not $RV[DIRSYSTEMVOICE].

95

Protected Scripts

Saving VoiceGuide Script as 'Protected Script' encrypts the script file.

Protected Scripts can only be viewed/edited if the password is known.

Protected Scripts should be used if the VoiceGuide Script contains sensitive information, like

database or web service access passwords etc.

When running Protected Scripts VoiceGuide will decrypt the script in memory, preventing the

sensitive information from being disclosed.

Protected Scripts have the .VGP suffix.

96

Sound files

The format of sound files which are to be used depends on which version of VoiceGuide is used.

Versions 7.x .WAV : U-Law 8kHz 8-bit Mono or A-Law 8kHz 8-bit Mono.
Can also use .WAV PCM: 8kHz or 11kHz, 8-bit or 16-bit, Mono.
Preferred format is selected at install time.

Versions 6.x .WAV : PCM 8kHz, 8-bit, Mono.
Can also use .VOX files: 8kHz, 4bit, ADPCM.

Versions 5.x .WAV : PCM 8kHz, 16-bit, Mono.
When using VoiceGuide versions 5.x with Dialogic TAPI/WAVE drivers then the sound
files must be recorded in the format used by the Dialogic Wave driver, which is WAV
PCM 11kHz, 8bit, Mono.

VoiceGuide comes with a number of pre-recorded system files which are installed in

directory \system\voice\

The format of the sound files installed may depend on what options were selected uring install.

An alternative system directory can be specified in the script by assigning the directory path to the

DIRSYSTEMVOICE Result Variable.

Please see the Multilanguage section for more information on this.

The sound files say “Pound Key” to indicate the “#” key. Alternate copies of the sound files have

been supplied if you would like VoiceGuide to use “Hash Key” to indicate the “#” key. To use these

files, just copy the alternate files over the system files used by VoiceGuide. The alternate files have

"_HashKey" appended to their filename.

Converting Sound Files

Converting of large number of sound files can be done using the free SOX Sound eXchange toolkit

from http://sox.sourceforge.net/ or Adobe Audition (http://www.adobe.com/products/audition/).

Other tools are also available as well.

System Sound Files

Files in \system\voice\ contain the following recordings:

0-23, 30, 40, 50, 60, 70, 80, 90
These files contain the digit which corresponds to the
name of the file.

AcceptAutoCall
This is an automated telephone call, please press any

number on the telephone keypad to accept this call

am am as in 8:30 am

and ...and...

beep1 A short beep played before recording sound files.

billion billion

cents cents

dollars dollars

ErrorPlayingFile
There has been an error playing this file, please

check the file format

97

GetNbrsConfirmIntro You have entered the following number:

GetNbrsConfirmMenu
Please press '1' if that is correct, or press '2' if you

would like to re-enter the number

hundred hundred

MaxRecTime
I'm sorry, the maximum record time has been

reached

million million

minus minus

month01 ... month12 January ... December

place01 ...place31 first ... thirty first

pm pm as in 5:30 pm

point point - as in the decimal point

press press

pressplz please press

RecMsgMenu

Please press '1' to replay the message, '2' to delete

the message and record again, or '3' to save this

message and go back to the voicemail box menu

SoundFileNotFound The sound file specified could not be found

thousand thousand

trillion trillion

transferto to be transferred to

TsfrCallFrom This is a transferred call

TsfrAskAccept
Please press 1 to accept the call, or press any other

number to reject it

ACD

acd_EstWaitTimeIsLessThen Your estimated wait time is less then

acd_EstWaitTimeIs Your estimated wait time is

acd_Minute minute.

acd_Minutes minutes.

acd_YouAre You are ...

acd_InTheQueue ...in the queue.

acd_LongWaitTimes We are experincing longer then normal wait times.

acd_IfYouDoNotWantToWait
If you do not want to wait, you can request a
callback.

acd_NotLosePlaceAndCallBack
You will not lose your place in the queue and the
system will call you back once you have reached the
start of the queue.

acd_NotLosePlace You will not lose your place in the queue.

acd_PleaseSayYourName
Please say your full name after the tone and press
any key when you have finished.

acd_WeHaveRecorded The name we have recorded is:

acd_Press1orRecAgain
Please press 1 if that is correct or press any other
key to record again.

acd_WeHaveYourNumber

Please press 1 if you would like us to call you back on
the phone number from which you are calling from, or
press any other key to enter the contact phone
number.

acd_EnterPhoneNumber
Please enter the phone number on which you would
like us to call you back.

acd_YouHaveEntered You have entered:

acd_Press1orEnterAgain
Please press 1 to confirm, or press any other key to
re-enter the number.

acd_SystemWillCallBack
The system will call you back once you have reached
the start of the queue.

acd_WeWillCallBackOn We will call you back on ...

acd_InApprox ... in approximately ...

acd_ThisIsACallFor This is a callback telephone call for...

acd_When When...

acd_WhenAtTelephonePress1 ... is on the line please press 1 to continue.

acd_YouWillNowBeConnected Thank you, you will now be connected.

98

acd_ThankYou Thank You.

Automated Attendant

aa_connectto To be connected to

aa_getextorspell

If you know the extension number of the person to
which you would like to be transferred please enter it
now, otherwise please press 1 to spell the name of
the person to whom you want to be transferred using
your telephone keypad , or press 0 to be transferred
to the operator.

aa_nomatchext This extensions does not exist

aa_nomatchext2 Extension could not be found

aa_nomatchnames No matching names can be found

aa_press0operator or press 0 to speak with the operator

aa_press0reception or press 0 to speak with reception

aa_spellname
Please enter the first 4 characters of the persons
name, spelling the surname using the keys on your
telephone keypad.

aa_spellname2
Please enter the first 4 characters of the persons
surname, spelling the surname using the keys on
your telephone keypad.

aa_transferringto Transferring you now to...

aa_xfernoanswer

The call was not answered, press 1 to leave a
message in the voicemail box, or press 2 to try
another extension. You can press 0 to speak with the
operator.

aa_xferextbusy

The extension is busy, press 1 to leave a message in
the voicemail box, or press 2 to try another
extension. You can press 0 to speak with the
operator.

Voicemail

VmbAccessGetVmbId

Please enter the voicemail box number for which you

want to leave the message and then press the pound

key

VmbAccessGetVmbIdRetrieve
Please enter your voicemail box number and then

press the pound key

VmbAccessGetVmbPin
Please enter your 4 digit PIN number and then press

the pound key

VmbAccessInvalidVmbId This voicemail box does not exist

VmbAccessInvalidVmbPin
I'm sorry, the PIN number you have entered was

incorrect

VmbAccessListenMsgMenu

Please press '1' to replay the message, '2' to save the

current message and listen to the next message, '3'

to delete the current message and listen to the next

message, or press '0' to return to the voicemail box

menu

VmbAccessMenu

Press '1' to listen to new messages, '2' to listen to

saved messages, press '3' to change your greeting

message, or press '4' to change your mailbox PIN

number.

VmbAccessNewMessagesAnd ... new messages and ...

VmbAccessNoMessages No Messages

VmbAccessNoNewMessages There are no new messages

VmbAccessNoSavedMessages There are no saved messages

VmbAccessNoWelcMsg
You currently do not have a personalized welcoming

message

VmbAccessSavedMessages ... saved messages

VmbAccessWelcMsgMenu

Press '1' to play the current greeting message, '2' to

record a new welcoming message, '3' to save the

current message and exit and '4' to delete the current

message and exit

99

VmbAccessWelcMsgRecPrompt
Record your new welcoming message after the tone,

when you have finished recording press '1'

VmbAccessYouHave You have ...

VmbAdminName_Menu
Press '1' to play the current name, '2' to record a new
name, '3' to save the current name and exit or '4' to
delete the current name and exit

VmbAdminName_NoName
You currently do not have a name recorded for this
mailbox

VmbForwardAskAccept

This is the VoiceGuide voicemail system. You have a

new voicemail message. Press '1' to hear your new

message.

VmbForwardPhonePrompt1 The current forwarding phone number is:

VmbForwardPhonePrompt2

Enter the phone number to which your voicemail

messages will be forwarded, and press the pound key

when you have finished. You can press the pound key

to stop forwarding your voicemail messages or press

the star key to keep your current forwarding phone

number.

VmbForwardPhonePrompt3
You currently do not have a forwarding phone number

set up.

VmbForwardPhoneConfirm1 You have entered the following phone number:

VmbForwardPhoneConfirm2
Please press 1 to confirm, or press 2 to re-enter the

phone number.

VmbForwardPhoneChangedOK The forwarding phone number has been updated.

VmbDoesNotExist This mailbox does not exist

VmbPinChangedOK Your PIN number has been changed

VmbPinEnterNew Please enter your new PIN number

VmbPinEnterNew2 Please re-enter the PIN number

VmbPinNotMatching The two entered PIN numbers do not match

VmbWelcomeMsgDefault Please record your message after the tone

VmSendMainMenu

Please press 2 to delete the recorded message and

start recording again, 3 to save the recorded

message and start entering the destination voicemail

groups or 4 to delete the recorded message and

return to the voicemail box main menu.

VmSendGetNextDest

Please enter the next destination followed by the

pound key, or just press the pound key if you have

finished entering all destinations.

VmSendSuccess Messages have been sent.

VmSendRecPrompt
Please record the message after the tone. When you

have finished recording please press the Pound key.

VmSendGetNextDest
Please enter the next next recipient followed by the
pound key, or just press the pound key if you have
finished entering all recipients

VmSendMainMenu

Please press 1 to play the recorded message, 2 to
delete the message and record again, 3 to save the
message and start entering recipients, or press 0 to
delete the recorded message and return to the
voicemailbox menu.

VmSendRecPrompt
Please record the message you would like to send
after the tone. when you have finished recording
please press the pound key.

VmSendSuccess Messages have been sent

100

Testing Scripts

The best way to test the IVR system is to dial into it just like the caller would.

To test the script while developoing them a good approach is to setup VoiceGuide in VoIP mode and

dial into it by just dialing the IP address of the machine on which VoiceGuide is installed using a

VoIP phone or a soft phone from another PC.

or

Use a small PBX appliance and plug the analog lines from the small PBX into the Dialogic card.

Automated Testing

VoiceGuide can be used to create scripts which can test IVR systems by dialing into them and

running a test script which simulates callers responses.

Please contact sales@voiceguide.com for more information on designing such automated IVR

testing solutions.

101

Play

The Play module can:

Play a sound file,

Speak the typed text (Text to Speech),

Speak the specified text file (Text to Speech),

Play DTMF tones

Send Hookflash signal

While playing the module will listen for a response from the caller. You can select the number of

times the message will be re-played, and the pause between the replays.

Result Variables can be used when specifying the sound file to be played. In the example below the

file played will be different depending on what selection the caller made in the 'Get Language'

module.

Multiple sound files can be selected to be played by separating the successive files by commas. eg:

prompts\1.wav, prompts\2.wav

would result in two files from the script's prompts subdirectory being played (1.wav and 2.wav) one

after another.

If the sound files are specified without a full path then VoiceGuide will search for the sound files in

the script's directory, or in a script's \voice\ subdirectory (if it exists).

If one or more of the sound files to be played cannot be found then VoiceGuide will see if a path

SoundFileNotFound is defined in the module.

If the path SoundFileNotFound is defined then that path will be taken.

102

If the path SoundFileNotFound is not defined then VoiceGuide will play the system sound file

SoundFileNotFound.wav in place of the sound files that cannot be found.

Text to Speech

The text entered in the "Text to speak" box will be spoken. XML tags can be used when specifying

the text to be spoken. For full details on the XML tags which can be used please refer to Microsoft's

SAPI 5 specification, or to your TTS engine's reference.

If a text file can be specified in the ”Sound File” text box then VoiceGuide will read in the text file

and will speak (TTS) the contents of that file.

Paths

Paths specify which module the caller will go to if a matching response is made by the caller. eg:

103

A Timeout path is taken if no key has been pressed within the specified number of seconds after the

last replay of sound file(s) has completed. If no Timeout path is specified and no selection is made

within 10 seconds of the last message replay finishing, VoiceGuide will hang up the call.

While sound file is playing, keyspresses can be used to skip forward/back or to adjust playback

speed and volume. Special PLAY ACTION type paths need to be specified to achieve this:

On {Trigger} Goto [PLAY ACTION - Pause]

On {Trigger} Goto [PLAY ACTION - Resume]

On {Trigger} Goto [PLAY ACTION - Jump Forward]

On {Trigger} Goto [PLAY ACTION - Jump Back]

On {Trigger} Goto [PLAY ACTION - Jump To Start]

On {Trigger} Goto [PLAY ACTION - Jump To End]

On {Trigger} Goto [PLAY ACTION - Speed Increase]

On {Trigger} Goto [PLAY ACTION - Speed Decrease]

On {Trigger} Goto [PLAY ACTION - Speed Reset]

On {Trigger} Goto [PLAY ACTION - Volume Up]

On {Trigger} Goto [PLAY ACTION - Volume Down]

eg:

On {4} Goto [PLAY ACTION - Jump Back]

etc.

The skip forward/back size can be adjusted by setting a value of following Result

Variables in the Evaluate Expression module:

$RV[playaction_skipbackbytes]

$RV[playaction_skipforwardbytes]

104

Playing DTMF tones and Hookflash

The Play module can also play DTMF tones, and send Hookflash signals. To specify the

DTMF tones to send, type in the DTMF tone sequence in the “Sound File” text box. An

exclamation mark “!” indicates a hookflash, and a comma “” indicates a pause, whilst

characters “0-9“ and “A-D“ are used to indicate DTMF tones

When using Voice Modems you can only specify either a hookflash or DTMF tones in a

Play module. This means that in order to have the modem send a hookflash followed by

DTMF tones you will need to use two Play modules one after another. The first Play

module would just contain the hookflash, and the next module will contain the DTMF

string. You should then use a Timeout path to link the two modules together (eg: On

{Timeout 1} Goto [Dial Number]). In this situation using the Timeout path allows you

to specify exactly how long after the hookflash will the DTMF tones be dialed. Pause

characters cannot be used at all with most Voice modems.

When using Dialogic cards any combination of DTMFs, hookflashes and pauses can be

specified on the one line and the Dialogic card will play them correctly.

Automated DNIS based file selection

VoiceGuide allows per-DNIS sound file specification.

If DNIS is supplied on the call then VoiceGuide will see if a "DNIS-tagged" derived

filename exists. The "DNIS-tagged" derived filename is the original filename with a

"_DNIS" inserted just before the ".wav" in the filename.

eg. if the Play module is configured to play a file welcome.wav and the DNIS on the call is 1234 then

VoiceGuide will first search for file welcome_1234.wav If welcome_1234.wav does not exist then

VoiceGuide will play the sound file welcome.wav

NB: DNIS is an expression indicating the number dialed by the caller, and is only really available on

ISDN and VoIP systems. On analog systems a close replacement of this functionality can be

achieved by using $RVs within the filename to be played, and setting RV value previous based on

Inband Signaling or user selection etc.

105

Record

The Record module will record a sound file.

The Record module can also be used to do Call Recording. It can be used to record the conversation

between two callers connected together using "Dial and Conference" (tromboned transfer) or 3-

way-call. For more information see here.

Recording will finish when:

a user settable timeout is reached, or

a key that has a path defined for it is pressed, or

silence is detected, or

if the caller hangs up.

In the ‘Record file details’ text box you may:

Specify the full filename of the destination file:

Recording will be copied to the specified destination. If a file with this name exists already then it

will be overwritten.

Specify just the directory in which the recordings are to be placed

A filename will be generated and the recording will be placed in the specified directory. The directory

name must finish with a “\”

Leavethe entry blank

A filename will be generated and the recording will be placed in the script’s directory

If the destination filename is not specified the following file name will be generated by VoiceGuide:

MMDDHHNNSS_LineId_CallerID.wav

where:

106

MM 2 digit month

DD 2 digit day

HH 2 digit hour

NN 2 digit minute

SS 2 digit second

LineId on which line the call arrived

CallerID
Caller ID of the caller who left the

message

The record module is usually used to allow remote recording of a file which is used by

other parts of a script or other scripts. For messages left by callers a Voicemail box

is usually used.

The Timeout path is used to specify the maximum length of recording.

The paths screen below shows that the recording can go on for 30 seconds, after which

the caller will be sent to the Main Welcome module. If the caller presses any of the

keys listed, the recording will terminate and the caller will be sent to the Main

Welcome module.

Silence Detection

The recording will also stop if silence is detected. The following type of path can be

used to tell VoiceGuide which module to go to next if a silence is detected;

On {silence} Goto [module title]

Minimum silence length and volume parameters can be set by editing the VG.INI

107

configuration file, in section [PlayRecordConfig]. From VG.INI file:

;SilenceDetectLength: 40=4 seconds

SilenceDetectLength=40

SilenceDetectLevel=10

The silence detection settings can be set from within the script as well, by assigning

values to Result Variables SilenceDetectLvl and SilenceDetectLen using the Evaluate

Expression module. eg. To disable silence detection from within the script use:

Result Variables

$RV[ModuleTitle] will store the filename of the recorded sound file. Includes the full

directory path.

$RV[ModuleTitle_EndRecCause] will store the reason why recording was stopped.

$RV[ModuleTitle_RecLen100ms] will store the recording length in 100ms units (eg. a

value of 75 equals seven and a half seconds).

Call Recording - Recording Conversations

The Record_2Lines_Start function can be used to record both sides of the conversation.

Record_2Lines_Start supports recording of both sides of a brdged conference call.

Record_2Lines_Start also supports recording of both sides of the Caller<->IVR

connection - recording what IVR plays to the caller and the callers responses.

108

109

Get Numbers

The Get Number module plays a sound file, and gathers a number sequence response from the

caller. Caller can indicate that they have finished entering the number by pressing the "#" key, or

module can complete when number reaches a pre-set legth or times out awaiting further input.

Module can optionally run a verification check on the entered number. Moduile can also optionally

play back the number sequence for customer verification.

Sound files

Multiple sound files can be selected to be played by separating the successive files by commas. eg:

prompts\1.wav,prompts\2.wav

would result in two files from the prompts subdirectory being played (1.wav and 2.wav)

one after another. If you do not want a sound file to be played at all you can also

specify “none” in the sound file text field.

If Text to Speech (TTS) is enabled then a text file can be specified in the ”Sound

File” text box and VoiceGuide will read in the text file and will speak (TTS) the

contents of that file.

Play back entered number and ask caller to confirm

If this option is selected and the caller has entered something then VoiceGuide will

play back the entered number and ask the caller to confirm it. The caller will need to

press '1' to confirm the entry, any other keypress will result in VoiceGuide asking

for the caller to enter the number again.

110

Minimum entered number length

The minimum length of there entered number which this module expects to receive from

user.

Maximum entered number length

The maximum length of the entered number which this module should wait for. Once this

many digits have been entered the module will immediately perform the next action - be

it taking the best matching path or running any selected confirmation and verification

options.

Verify Entered Number Tab

Quite often it is desirable to determine if the entered number satisfies some

criteria, and if it does not then the option should be given to the caller to enter

the number again. A VBScript can be specified here to check if the number passes any

required checks/tests.

For example to check that the entered number is between 13 and 16 characters long and begins

with either a 3 or a 4 the following VBScript would be used:

set vg = CreateObject("vgServices.CommandLink")

iLen = Len("$RV_ENTEREDNUMBER")

sFirstChar = Left("$RV_ENTEREDNUMBER",1)

if iLen<13 or iLen>16 or (sFirstChar <> "3" and sFirstChar <> "4") then

 sResult = "verify_failed"

else

 sResult = "verify_passed"

end if

vg.Run_ResultReturn $RV_LINEID, sResult

set vg = Nothing

For more information on VBScripts and how they are used from within VoiceGuide please refer to

this Help file's entry on Run VBScript module.

As a quick-start guide lets just say here that this line should be at the beginning of every VBScript

used to verify the number:

set vg = CreateObject("vgServices.CommandLink")

and these lines should be at the end:

vg.Run_ResultReturn $RV_LINEID, sResult

set vg = Nothing

the value of sResult should be set within the script to be either "verify_passed" or

"verify_failed".

111

This is the method by which VoiceGuide is informed whether the verification of the entered number

passed or failed.

If "verify_failed" is returned back to VoiceGuide then VoiceGuide will either play the sound file(s)

specified in the "file to play if entered number is wrong length or verification failed" text box, or if

that text box is not set it will just play the main prompt asking the caller to enter the number again.

If the verification script starts playing another file before returning "verify_failed" then VoiceGuide

will just wait for caller to start entering the number again, without starting to play any other sound

files. This allows customized advice sound files to be played depending on the cause of failed

verification.

$RV_ENTEREDNUMBER contains the number just entered by the caller. In the verification script use

$RV_ENTEREDNUMBER instead of the $RV[ModuleName] style $RV. When the verification script is ran the

$RV[ModuleName] style result variable has not yet been set.

Paths

Here is an example of valid paths:

Success Path

If any of the paths match the entered number exactly then that path is taken, otherwise the

'Success' path will be taken.

If the 'Success' path is not defined and none of the other paths match the entered number exactly

then the caller will be asked to enter the number again.

Fail Path

112

Taken if the caller has not entered any numbers, ie. caller just presses the "#" key or VoiceGuide

times out awaiting first number entry.

If the 'Fail' path is not defined then the system will hang up the call.

Timeout Paths

The timeout between key presses is set by default to 6 seconds. Default timeout values used by

this module can be changed in VG.INI file - in the [moduleGetNbrs] section.

If a ‘Timeout’ path is specified then that path overrides the default inter-digit key press timeout,

and that path will be taken whenever a timeout occurs awaiting a key press.

'Exact Match' Paths

If any of the paths match the entered number exactly then that path is taken immediately. It will be

taken immediately even if the path does not satisfy the minimum and maximum number length

limits. The "Confirm entered number" option will also be ignored, and no verification script will be

ran.

Note: Manual editing of the path trigger entry loaded by script designer in the {} brackets will be

necessary to specify the ‘exact number’ used. ie. the exact_number placeholder loaded by the script

designer needs to be replaced with the actual number combination to trigger on.

'*' Paths

If an "on {*} " path is defined then pressing the * key results in VoiceGuide assigning a "*" to the

Result Variable for the module and going down the "on {*} " path. This feature can be used to

easily implement a "press * to correct" option - just point the "On {*} " path back to the same

module and then when caller presses the * key they will be able to just start entering the number

again from start.

If a "on {*} " path is not specified then the * key will be included in the string of numbers captured

by the module.

Result Variables

Main RVs created by the 'Get Numbers' module:

$RV[moduleTitle]

Stores the characters entered by caller.

$RV[moduleTitle_PathTaken]

Stores which path was taken when exiting the module. This could be "success", "fail", "Timeout",

"*" or the entered number if the exact path match was made.

113

Notes

1. When entering numbers it is usually best to ask callers to press a # key or * key to indicate they

have finished entering the number. Using such terminating characters allows you to act immediately

after the # or * is pressed, without the need to rely on timing-out awaiting next keystroke to

determine when caller has finished entering number.

114

Say Numbers

The Say Numbers module can speak the supplied number as:

Digits
"12345" would be spoken as "one two three four five".
Up to forty digits will be spoken.

Amount Dollars
"12345" would be spoken as "twelve thousand three
hundred forty five dollars". Amounts up to twelve
digits long will be spoken.

Amount Cents
"12345" would be spoken as "one hundred twenty
three dollars forty five cents". Amounts up to fourteen
digits long will be spoken.

Amount Cents, Decimal Point

"12" would be spoken as "twelve dollars zero cents".
"12.3" would be spoken as "twelve dollars thirty
cents". "12.34" would be spoken as "twelve dollars
thirty four cents". Amounts up to fourteen digits long
will be spoken. This setting is usually used for
speaking amounts retrieved from databases.

Number
"12345" would be spoken as "twelve thousand three
hundred forty five". Numbers up to twelve digits long
will be spoken.

DateMMDD
"0123" would be spoken as "twenty third January".
Only the first four digits of the supplied string are
looked at.

DateDDMM
"2301" would be spoken as "twenty third January".
Only the first four digits of the supplied string are
looked at.

DateMMDDHHNN
"01231456" would be spoken as "twenty third January
two fifty six pm". Only the first eight digits of the
supplied string are looked at.

DateDDMMHHNN
"23011456" would be spoken as "twenty third January
two fifty six pm". Only the first eight digits of the
supplied string are looked at.

TimeHHNN
"1745" would be spoken as "five forty five pm",
"0730" would be spoken as "seven thirty am"

TimeHHNN 24 "1745" would be spoken as "seventeen forty five"

Result Variables can be used when specifying what number is to be spoken. Sound files to be

played before and after the spoken number can also be selected. Result Variables can also be used

in those filenames.

If a filename is specified then VoiceGuide will read in the file contents and read the data specified in

the first line of the file.

If Digits, Amount or Number options are selected, and the number to be spoken starts with a "-",

then the word "minus" will be spoken first before speaking the reset of the number.

If Date or Time options are selected , and the supplied number is the wrong length or does not

make sense in the context of the selected option (eg: the supplied number is 8933 and the

DateMMDD option is selected) then nothing will be played and the Fail path will be taken. If the Fail

path is not defined then the Success path will be taken. If neither the Fail or Success paths are

defined then VoiceGuide will hang up the call.

The Date/Time checking feature allows the Say Number module to be used for verifying validity of

any caller-entered times and dates. The Time Switch module can also be used for checking the

validity of date/time entered by caller.

Sound files played before & after the number

115

The sound files used in the module have to be of the same format as VoiceGuide current 'system'

sound files (usually found in VoiceGuide's \system\voice\ subdirectory). This would be either "ALaw

8kHz 8bit Mono", or "ULaw 8kHz 8bit Mono".

Multiple sound files can be selected to be played by separating the successive files by commas. eg:

prompts\1.wav, prompts\2.wav

would result in two files from the prompts subdirectory being played (1.wav and 2.wav) one after

another.

Changing the way Say Number module speaks numbers

Users can edit the way in which the numbers are spoken, or even add their own Say Number

functions.

In VoiceGuide v5 and v6 the way the numbers are spoken can be changed by editing the file:

lib_num2wav.vbs located in VoiceGuide's \system\vbs\ subdirectory. This is useful if it is required to

say numbers/amounts in a language other then English. Please read the lib_num2wav.vbs file for

more information.

In VoiceGuide v7 a DLL file is used to generate the list of WAV files needed to speak the number.

The DLL is called vgLib_SayNumbers.dll and is located in VoiceGuide's \system\dll\ subdirectory.

The source code and full VS2005 C# project required to build the DLL can be found in this

VoiceGuide subdirectory: \system\dll\Source\vgLib_SayNumbers. After building the new DLL just

place it in VoiceGuide's \system\dll\ subdirectory and restart VoiceGuide in order for VoiceGuide to

start using the new DLL.

In VoiceGuide v7 you can also select to have the system use the lib_num2wav.vbs to generate the

spoken number by changing the VG.INI file setting. In VG.INI, section [moduleSayNumbers], change

the entry WavListGenerator from DLL to VBScript.

116

Send Email

This module will send an Email message.

You can specify the Destination, Title, Message Body and an Attachment File. Result Variables can

be used.

Example:

If the message needs to be sent to multiple email addresses the individual addresses must be

separated by semicolons ";" or commas ","

Other information may be set in the Misc tab, including return email address, CC, BCC.

The two Send Method tabs specify which SMTP servers (primary and backup) the email should be

sent through.

Please note that many SMTP gateways require that you specify a valid return email address before

they will accept and send the email.

VoiceGuide can send emails by connecting to an SMTP server, or a server that supports SSL secure

STMP connections started using STARTTLS (TLS Security). SMTPS servers are not supported.

Most STARTTLS connections are made using port 587. If a different port is to be used for a STARTTLS

connection then the server name should be prefixed with ssl: to indicate that STARTTLS is to be

used.

eg:

ssl:smtp.gmail.com

Gmail supports STARTTLS connections for outgoing emails, so if you encounter problems with your

local SMTP server not supporting STARTTLS then a free Gmail account can be used to send out the

117

emails.

If the email was queued to be sent then the Success path will be taken. If there were problems

with queuing the email then the Fail path will be taken. Note that a 'Success' result does not

indicate that email was sucessfully sent out or delivered. A 'Success' result just indicates that the

email was queued for sending.

What the above paths do:

On {Success} Goto [Confirm Email Sent] Go to module called 'Confirm Email Sent'

On {Fail} Goto [Say Error] Go to modulecalled 'Say Error'

Result Variables

The following Result Variables are created by this module:

$RV[module title]

Will store the destination email address.

$RV[module title_Subject]

Will store the email message subject.

$RV[module title_Message]

Will store the email message body text.

$RV[module title_Attachment]

Will store the filename of the attached file sent.

118

$RV[module title_SendResult]

Will store whether sending of the email was successful or not. Stores 'OK' if the message was sent,

or stores an error code if the message could not be sent. An error code of 3 means that Microsoft

Outlook/Exchange/Messaging was not running at the time.

119

Database Query

The Database module can access databases and data files. Any information retrieved is made

available for use by subsequent modules.

Following technologies can be used to interact with databases:

.NET Data Providers (ADO.NET)

ODBC

OLE DB

All databases support at least one of the above interfaces.

Module Parameters

.NET Data Provider
Used to specify the .NET Data Provider to use. Can be

left blank if using ODBC or OLE DB.

Connect String Connect String to use.

SQL Query
The SQL statement to run, or the rage of cells to

retrieve from Excel.

Result Variables can be used in all of the above fields.

Below are some examples illustrating the different Connect String which can be used to access

various databases. More examples of connect strings can be found at: http://

www.connectionstrings.com

http://www.connectionstrings.com/
http://www.connectionstrings.com/

120

.NET : MS SQL Server

Data Provider: System.Data.SqlClient

Connect String: Data Source=myServerAddress;Initial Catalog=myDataBase;User Id=myUsername;

Password=myPassword;

.NET : MySQL

Data Provider: MySql.Data.MySqlClient

Connect String: Server=myServerAddress;Database=myDataBase;Uid=myUsername;Pwd=myPassword;

ODBC : MS SQL Server

Connect String: Driver={SQL Server Native Client 10.0};Server=myServerAddress;

Database=myDataBase;Uid=myUsername;Pwd=myPassword;

ODBC : MySQL

Connect String: Driver={MySQL ODBC 5.1 Driver};Server=myServerAddress;Database=myDataBase;

User=myUsername;Password=myPassword;Option=3;

ODBC : Oracle

Connect String: Driver={Oracle in OraHome92};Server=myServerAddress;Dbq=myDataBase;

Uid=myUsername;Pwd=myPassword;

ODBC : DSN Data Sources

Connect String: DSN=myDataSourceName;

NOTE: on 64 bit systems the 32-bit "ODBC Data Source Administrator" must be used to create the

data source. The 32 bit "ODBC Data Source Administrator" can be found at C:\Windows\SysWOW64

\odbcad32.exe

OLEDB : MS Access

Connect String: Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\mydatabase.accdb;

OLEDB : MS Excel

Connect String: Provider=Microsoft.ACE.OLEDB.12.0;Data Source=c:

\myFolder\myExcel2007file.xlsx; Extended Properties="Excel 12.0 Xml;HDR=NO;IMEX=1";

Query Results

The results of the database query are accessible using Result Variables. The following Result

Variables can be used to access data retrieved by a Db Query module:

121

$RV[ModuleTitle_ColumnIndex_RowIndex]

If more then one item was requested in the query, the Column Index can be used to access the

individual items in each retrieved row.

eg: module LookupContactDetails uses a query: SELECT cust_telephone_mobile, cust_email

FROM Customer WHERE CustId='$RV[Get CustId]'

After running above query $RV[LookupContactDetails_1_1] can be used to access the

contents of the cust_telephone_mobile column, and $RV[LookupContactDetails_2_1] can be

used to access the contents of the cust_email column for customer 1.

$RV[LookupContactDetails_1_2] can be used to access the contents of the

cust_telephone_mobile column for customer 2, etc.

The following Result Variable can be used to access the number of database entries

which were returned:

$RV[

Play Tab

If "Wait Until SQL Command Completes" option is selected, the sound file specified in

the Play tab will be played while the database query is performed.

Paths:

Three paths can be selected from this module:

True Some data was retrieved.

False No data was retrieved.

Timeout
Sata retrieval took too long and a

specified Timeout path is taken.

SQL Commands

For a complete reference SQL see the Access Help files, or other Database reference

books. The few examples below are included to demonstrate simple applications.

122

Retrieving Data

As an example, lets have an application where after entering the postal code, the

caller would like to know how many clients live in this postal area code area, and

then be told their telephone number, and amounts which they owe.

Suppose the caller has entered the postal area code in a Get Numbers module titled

'Ask for ZIP'. We can now use a Result Variable to use the enterd value in a query.

The SQL below will retrieve selected details of all clients living in this area code:

SELECT AddressId, BalanceOwing, WorkPhone, MobilePhone FROM Addresses WHERE

PostalCode='$RV[Ask for ZIP]'

The count of how many clients were found to live in this postal code is accessible via

$RV[Get ClientDetails_RowCount]. The first clients details would be accessible using

$RV[GetClient Details_1_1] through to $RV[Get Client Details_4_1]

Say Number modules can be used to play the numeric information, like the balance and

telephone numbers. TTS can be used to play the text information.

Inserting Data

The following SQL statement shows how to insert data into Payments table. In this

example the Payments table has the following fields (amongst others): CustomerID,

PayAmount, CardNumber, ExpDate. The values to be inserted into the database have been

entered by the user in previous modules and Result Variables are used to in the

expression. The result variables will be replaced by VoiceGuide by the actual entered

data before the SQL statement is executed.

INSERT INTO Payments (CustomerID, PayAmount, CardNumber, ExpDate) VALUES ('$RV

[GetCustId]', '$RV[GetPayAmount]', '$RV[GetCardNumber]', '$RV[GetExpiryDate]')

Updating Data

The following SQL statement shows how to modify data in the Payments table. The

Payments table has has the following fields (amongst others) CustomerID,

PaymentStatus. The result variables will be replaced by VoiceGuide by the actual

entered data before the SQL statement is executed.

UPDATE Payments SET PaymentStatus='Paid' WHERE CustomerID='$RV[GetCustId]'

123

In the examples above we have used single quotes as part of the WHERE and VALUES

sections of the SQL statement. Single quotes should be used when referring to string

or text fields in the database. When referring to number fields the single quotes

should not be used: eg:

UPDATE Products SET UnitPrice=$RV[AddToPrice] WHERE ProductID=$RV[GetProductId]

Running Stored Procedures

Stored Procedures can be ran using the SQL EXEC statement:

EXEC UpdateStatusToPaid '$RV[GetCustId]'

More advanced Stored Procedure calls can be performed using VBScript - for which the

'Run VBScript' module can be used.

Working with BLOBs

VoiceGuide allows BLOB handling. BLOBs are usually used to store sound or graphics

files or other large data files.

To specify a BLOB data element at insert the following needs to be to be specified as

part of the SQL statement:

<BLOB><file>filename</file></BLOB>

eg:

INSERT INTO VmMsgs (Vmb, MsgKey, WavBlob) VALUES (1111, '$RV[MsgID]', <BLOB><file>$RV

[Rec]</file></BLOB>)

To specify a BLOB data element for retrieval the following needs to be to be specified

as part of the SQL statement:

<BLOB><dbcolumn>ColumnName</dbcolumn><file>filename</file></BLOB>

eg:

SELECT Vmb, <BLOB><dbcolumn>WavBlob</dbcolumn><file>c:\retrievedBLOB.wav</file></BLOB>

FROM VmMsgs WHERE MsgKey='$RV[MsgID]';

BLOB reading/writing is only supported if .NET Data Providers are used to connect to

124

the database.

A sample script which writes and reads .WAV sound files as BLOB to/from database is

provided in VoiceGuide's "scripts\Database BLOB WriteRead" subdirectory.

Books on SQL

A good introductory book on SQL is:

"SQL Queries for Mere Mortals" by Michael J. Hernandez, John Viescas

ISBN 0201433362

Microsoft Excel Example

The DB Query module can also retrieve data directly from an Excel file.

Excel range query specification follows this format :

SELECT * FROM [SheetName$StartCell:EndCell]

For an application which allows people to query a daily roster the Excel spreadsheet

may look something like this:

The caller would enter their Roster Number - which corresponds to the row in the Excel

spreadsheet, and then we could retrieve the information in the 'start time' and the

'end time' columns using the following query:

SELECT * FROM [Sheet2BRV[Get Roster Number]:C$RV[Get Roster Number]]

The returned data would be saved in Result Variables. If the database query module's

title was GetTimes then the Start Time would be accessed using $RV[GetTimes_1_1] and

the End Time would be accessed using $RV[GetTimes_2_1]

125

If we had each day of the week on a different page, we could also ask the customer to

enter the day that they want to enquire about, and then our Query would be:

SELECT * FROM [Sheet$RV[GetDay]$B$RV[Get Roster Number]:C$RV[Get Roster Number]]

Please note that to retrieve only the value of a single cell (say B5 on Sheet2) the

cell address still needs to be specified as a range, so the cell location expression

should be: "Sheet2$B5:B5" (Using "Sheet2$B5" will result in an error returned by

Excel)

126

Run Program

This module will run the specified program. Result Variables can be used when specifying the

program's name and the parameters passed to the program.

Run Program Tab

The Program name and parameters passed to the program are specified here.

Play Tab

If "Wait Until Program Finishes" option is selected, the sound file specified in the Play tab will be

played while the started program is executing. The playing of the sound file will be stopped as soon

as the the program finishes.

Paths Tab

Wait until program finishes

 If the result file contains some data, then the

"Success" path is taken. If the result file is empty

then the "Fail" path is taken. If the program could not

be started then the "Fail' path is taken.

Don't Wait

 If the program was started successfully then the

"Success" path is taken. If the program could not be

started then the "Fail' path is taken.

After reading in the result file, VoiceGuide will rename the file by adding a ".last" to the filename.

127

Timeout Paths

When used in Run Program module, a Timeout Path can be used to limit the maximum amount of

time the module will wait for the called program to finish (when "Wait until program finishes" option

is selected). When the timeout is reached the module will close the program it has called, and go

the module specified in the Timeout Path.

Returning data from ran program back to VoiceGuide

There are two ways in which the ran program can return data back to VoiceGuide:

Calling VoiceGuide's COM/WCF functions. eg: Run_ResultReturn

or:

Creating a 'Result File' which is then read in by VoiceGuide.

Result Files

If "Wait Until Program Finishes" option is selected, then VoiceGuide will wait until the program

completes and afterwards VoiceGuide will look for the result file which can be optionally created by

the called program. The file can be created in the script's directory, or in the directory where the

program was ran from, or in VoiceGuide's \data\ subdirectory.

The file must be named VGRUNRESULT_LineNumber.TXT

The LineNumber is the ID of the line which is executing the Run Program module, and it can be

passed to your program using the $RV_LINEID Result Variable.

The result file can be used to return results back to VoiceGuide. This file should contain the list

of the Result Variables that you want VoiceGuide to read in, along with their values.

The syntax for the VGRUNRESULT_LineNumber.TXT file is:

[Result Variable Name]{Result Variable Value}

Multiple Result Variables can be specified. For Example, the following contents:

[RvName1]{Value1}[RvName2]{Value2}[RvName3]{Value3}[RvName4]{Value4}

Would return 4 Result Variables to VoiceGuide, whose values would be whatever is

contained in the curly brackets. All Result Variables must be listed on a single line.

Example 1:

A custom written utility ReadData.exe to retrieve information about a product has been

written and the system has a Get Number Sequence module called Get Data Type which is

used to ask caller to select what data is to be retrieved. The ReadData.exe is then

128

called with the information entered in Get Data Type passed as a parameter.

Result File is then be used to return the retrieved data. ReadData.exe writes the

following data into the file:

The above will create 3 new Result Variables in VoiceGuide, which can be accessed

using:

$RV[Product_Price]

$RV[Product_InStock]

$RV[Product_OnOrder]

whose values are:

1495

7

50

respectively. These Result Variables can then be used is Say Numbers modules to speak

out this information to the caller.

Example 2:

The Run Program module can be used to write out data that the caller has entered into

129

a file. The command below will write out the 3 pieces of data gathered in Get Number

Sequence modules out into the file output.txt:

command.com /c echo $RV[GetUserId], $RV[GetProductID], $RV[GetOrderAmount] >> c:

\output.txt

Use ">" instead of ">>" if you would like to overwrite the output.txt file instead of

appending to it.

Always specify the full path of the file to which the output is echoed - if you do not

specify the full path sometimes the output file will not be in the scripts' directory.

Note: If writing to same log file from subsequent modules in same script or from

multiple lines then it's preferable to use the Run VB Script module to write log

files, as the DOS echo command does not handle concurrent writing to the same file

well.

Example 3:

Sound Recorder application specifying that it should play the specified sound file and

then close afterwards using this command line:

sndrec32 /play /close c:\test.wav

The Media Player application can also be used for this purpose:

mplayer /play /close c:\test.wav

If you are finding that the program does not run as VoiceGuide cannot find it then try

specifying the full path to where your program is on your system. For example, the

Media Player program on some systems is actually in:

C:\Program Files\Windows Media Player\mplayer2.exe

which would make the actual command line required to be used in the Run Module:

C:\Program Files\Windows Media Player\mplayer2.exe /play /close c:\test.wav

Example 4:

Send a message to another computer, alerting a particular user of an event. eg. when

the caller on the VoiceGuide system is about to be transferred to their extension.

net send someusername "VG call from $RV_CIDNUMBER"

Example 5:

Running batch files (.bat) : To run a batch file from a Run Program module it is best

to create a shortcut (a link) to the batch file and run the shortcut itself. You may

130

need to use the actual name of the file as shown when doing a DIR listing in the DOS

Command Prompt window.

Example 6:

Concatenation of sound files can be done using the "shntool" utility.

Eg: to concatenate wav files 1.wav, 2.wav and 3.wav into one file 1_2_3.wav you would

run the following command from a "Run Program" module:

command /c shntool join -stdout 1.wav 2.wav 3.wav > 1_2_3.wav

shntool can be obtained from:

http://www.etree.org/shnutils/shntool/

http://shnutils.freeshell.org/shntool/

http://www.etree.org/shnutils/shntool/
http://shnutils.freeshell.org/shntool/

131

Run VB Script

This module will run a VBScript or ECMAScript / JScript.

Result Variables can be used throughout the script.

After starting the script VoiceGuide can:

 Continue, without waiting for script to complete.

 Wait until script completes.

 Wait until script and sound file completes.

Continue, without waiting for script to complete option

VoiceGuide will immediately continue down the "Success" path once script was started successfully.

If script could not be started successfully then the "Fail" path is taken. If the path that VoiceGuide

should be following is not defined then VoiceGuide will hang up the call.

Wait until script completes option

VoiceGuide will wait until the script finishes running, or a response from the executing script is

received.

Script can send responses back to VoiceGuide while it is executing by calling one VoiceGuide's

ActiveX/COM functions. The functions which are considered to return a result back to VoiceGuide

are: Run_ResultReturn(), Script_Gosub(), Script_Goto(), Script_Return(). For more information on

VoiceGuide's ActiveX/COM interface please see the COM Interface section of Help file.

Once VoiceGuide detects that a script has completed and no COM response was received

beforehand then VoiceGuide will see if a "Result File" has been created by the script. If one has

been created then VoiceGuide will read in it's contents and then determine what to do next based

on the contents of the file.

The syntax of the Result File is the same as that used by the Run Program module. Please refer to

the Run Program module Help file's section for more information.

A "Success" or Result Variable list must be returned to VoiceGuide (either though a

Run_ResultReturn COM function or a Result File) in order for it to go down the Success path.

If no result is returned then the "Fail" path is taken after the VBScript completes.

Calls to Script_Gosub(), Script_Goto() and Script_Return() functions result in immediate running of

the next module.

Any sound files still playing when VBScript completes will be stopped.

Wait until script and sound file completes option

VoiceGuide will wait until the script finishes running (or a response from the executing script is

received) and until the sound file playing completes. Sound file to play can be specified either using

the "sound file to play" text box or can be started from with the script itself using the Play_Start

132

COM function.

Other functionality is similar to the "Wait until script completes" option above.

Limiting maximum execution time

To limit the length of time the script is allowed to run for, a Timeout Path should be defined. If the

script does not finish before the timeout occurs the script will be terminated and the timeout path

will be taken. The timeout value is in seconds and should not be set to 0 - a value of 0 will result in

the script being aborted immediately after it is started, without giving it any chance to run. Minimum

timeout value used should be 2 seconds.

Play Tab

If "Wait Until script Finishes" option is selected, the sound file specified in the Play tab will be played

while the started program is executing.

Writing VBScript

A pretty good book on VBScript is: "VBScript in a Nutshell" by Ron Petrusha, Matt Childs, Paul

Lomax.

VBScript editors which you can use to develop your scripts before moving them over the the Run

VBScript module can be found at: www.vbsedit.com.

Following are some examples of VBScripts which can be ran in the Run VBScript module. Extensive

use of VBScripting is also made by the VoiceGuide's Voicemail system. See VoiceGuide's \system\vm\

directory.

Using ECMAScript / JScript instead of VBScript

To have the module execute JScript the first line of the script must begin with this:

//ECMAScript or

//JScript

This indicates to VoiceGuide that the contents of this module are JScript and not the default

VBScript.

Using Result Variables in VBScripts

Before running the VBScript VoiceGuide will first see if there are any Result Variables specified within

the script, and if there are then VoiceGuide will first replace them with their current values and run

https://www.safaribooksonline.com/library/view/vbscript-in-a/0596004885/
https://www.safaribooksonline.com/library/view/vbscript-in-a/0596004885/
http://www.vbsedit.com

133

the resulting script then.

If the Result Variable is not defined then VoiceGuide will replace it with an empty string. For this

reason it is often desirable to have the Result Variables used with quotes specified around them.

Eg: If Caller ID information did not arrive then VoiceGuide will replace $RV_CIDNUMBER with an

empty string before letting the VBScript run.

So, if Caller ID information did not arrive this code:

If $RV_CIDNUMBER = "" Then

 CallerID = "Unknown"

Else

 CallerID = $RV_CIDNUMBER

End if

would be changed to

If = "" Then

 CallerID = "Unknown"

Else

 CallerID =

End if

Which you can see is not valid VBScript and hence and error will occur.

But if you write the code using quotes around the RVs, like this:

If "$RV_CIDNUMBER" = ""

 Then CallerID = "Unknown"

Else

 CallerID = "$RV_CIDNUMBER"

End if

and Caller ID information did not arrive then the resulting VBScript which VoiceGuide actually runs

would be:

If "" = "" Then

 CallerID = "Unknown"

Else

 CallerID = ""

End if

Which is a valid VBScript and when running it no errors will be generated and the script will work as

expected.

Result Variables should not be directly used in places where replacement with a blank would cause

a syntax error. Instead a variable which gets set to the RV value beforehand should be used in

those situations. That way there is no syntax error and the check for whether RV holds any data

can be made earlier in the script and the appropriate action taken if RV does not hold a value.

Notes:

134

After the Result Variables have been replaced in the VBScript, the new VBScript can be optionally

saved in VoiceGuide's \temp\ sub-directory, named as vbs_LineId_ThisCallScriptIndex.vbs Viewing

this file will allow you to confirm that Result Variable replacement was done correctly. Saving to .vbs

file can be set in VG.INI, in [moduleRunScript] section.

VBScript .vbs files can be executed by by using the Windows' wscript.exe utility.

On 32-bit systems the .vbs files can be ran by just double clicking on them.

On 64-bit systems please open a command prompt (may need to be an 'Administrator Command

Prompt') then change directory to the VoiceGuide \temp\ sub-directory and run this command line:

C:\Windows\SysWow64\WScript.exe vbs_x_y.vbs

Where vbs_x_y.vbs is the filename of the .vbs file which you wish to run.

VoiceGuide is 32 bit software so any VBScripts that use the VoiceGuide COM interface need to be

ran using the 32 bit version of VBScript interpreter.

On 64-bit systems if you change the Registry Key Computer\HKLM\SOFTWARE]

\Classes\VBSFile\Shell\Open\Command to use the 32-bit C:\Windows\SysWow64\WScript.exe then

the .vbs files can be ran by just being double-clicked.

Example : Save information to a file

The VBScript below will append a line of text to the file C:\LogCall.txt - the line of text will contain

information about start of the call, caller's telephone number and information entered by caller in

module "EnterClientNumber". Result Variables are used in this script to allow information from

VoiceGuide to be visible to the VBScript.

Const ForReading = 1

Const ForWriting = 2

Const ForAppending = 8

set fso = CreateObject("Scripting.FileSystemObject")

set tsFile = fso.OpenTextFile("C:\LogCalls.txt", ForAppending, True)

tsFile.WriteLine "$RV_STARTTIME, $RV_CIDNUMBER, $RV[EnterClientNumber]"

tsFile.Close

set tsFile = Nothing

set fso = Nothing

135

Example : Read information from a file

The VBScript below will read the contents of file C:\CurrentPrices.txt and will

assign them to VoiceGuide Result Variable $RV[ReadInPrice].

set fso = CreateObject("Scripting.FileSystemObject")

set fileUnitPrice = fso.OpenTextFile("C:\CurrentPrice.txt")

sEntireFile = fileUnitPrice.ReadAll

set fileUnitPrice = Nothing 'always deallocate after use...

set fso = Nothing

set vg = CreateObject("vgServices.CommandLink")

vg.RvSet $RV_LINEID, "ReadInPrice", sEntireFile

vg.Run_ResultReturn $RV_LINEID, "success"

set vg = Nothing 'always deallocate after use...

Example : Read information from Excel

The VBScript below retrieves information from an Excel spreadsheet.

Dim xlApp, xlBook, xlSht

Dim filename, value1, value2, value3, value4

filename = "c:\Warehouse.xls"

136

Set xlApp = CreateObject("Excel.Application")

set xlBook = xlApp.WorkBooks.Open(filename)

set xlSht = xlApp.activesheet

value1 = xlSht.Cells(2, 1)

value2 = xlSht.Cells(2, 2)

'the MsgBox line below would be commented out in a real application

'this is just here to show how it works...

msgbox "Values are: " & value1 & ", " & value2

xlBook.Close False

xlApp.Quit

'always deallocate after use...

set xlSht = Nothing

Set xlBook = Nothing

Set xlApp = Nothing

Example: Save information to Excel

The VBScript below saves information to an Excel spreadsheet.

Dim xlApp, xlBook, xlSht

Dim filename, value1, value2, value3, value4

on error resume next

filename = "c:\warehouse.xls"

Set xlApp = CreateObject("Excel.Application")

set xlBook = xlApp.WorkBooks.Open(filename)

set xlSht = xlApp.activesheet

xlApp.DisplayAlerts = False

'write data into the spreadsheet

xlSht.Cells(2, 2) = "New Data"

xlBook.Save

xlBook.Close SaveChanges=True

xlApp.Close

137

xlApp.Quit

'always deallocate after use...

set xlSht = Nothing

Set xlBook = Nothing

Set xlApp = Nothing

Example : Creating Result File

The VBScript below demonstrates how the $RV_LINEID Result Variable is used to

generate a Result file from which the data is read back into VoiceGuide. Please note that

using the COM function Run_ResultReturn() is a preferable way of returning information

to VoiceGuide (it's faster) - but a result file can be used if there is no other way.

Dim iIndexDow, iIndexNasdaq, iIndexSP500

'Do some work here to retrieve the data and initialize

'the iIndexDow, iIndexNasdaq and iIndexSP500 variables

strResultVariables= "[IndexDow]{" & iIndexDow & "}" & _

"[IndexNasdaq]{" & iIndexNasdaq & "}" & _

"[IndexSP500]{" & iIndexSP500 & "}"

iRet = WriteResultFile(strResultVariables)

Function WriteResultFile(strResult)

 Const ForReading=1, ForWriting=2, ForAppending=8

 filename = "VGRUNRESULT_$RV_LINEID.TXT"

 Set fso = CreateObject("Scripting.FileSystemObject")

 Set ts = fso.OpenTextFile(filename, ForWriting, True)

 ts.WriteLine(strResult)

 ts.Close

 WriteResultFile=0

 'always deallocate after use...

 set ts = Nothing

 set fso = Nothing

end function

It is recommended that the full path to the result file be specified, otherwise the Windows'

current 'default' path will be used by the file subsystem - and that does not always point to

138

the same path as the script's.

Example : MS Access Database read/write

Retrieving data from an MS Access database using an SQL query, and then updating the same

record with new values:

'ADO related const values from ADOVBS.INC file, usually found in: C:\Program

Files\Common Files\System\ado

Const adOpenForwardOnly = 0

Const adOpenKeyset = 1

Const adOpenDynamic = 2

Const adOpenStatic = 3

'other related const values

const vbGeneralDate = 0

const vbLongDate = 1

const vbShortDate = 2

const vbLongTime = 3

const vbShortTime = 4

set vg = CreateObject("vgServices.CommandLink")

set cn = CreateObject("ADODB.Connection")

set rs = CreateObject("ADODB.Recordset")

cn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\data\Ads.mdb"

if cn.State = 1 then

 vg.Admin_TraceLogAdd $RV_LINEID, 5, "vbs connection to Ads.mdb made OK"

 set rs.ActiveConnection = cn

 rs.Open "SELECT TOP 1 AdID, Filename, PlayCount FROM AdList WHERE PlayCount <

PlayCountMax ORDER BY LastPlayTime", cn, adOpenStatic

 if rs.RecordCount > 0 then

 vg.Admin_TraceLogAdd $RV_LINEID, 5, "vbs records found OK"

 iAdID = rs.Fields("AdID").Value

 sFilename = rs.Fields("Filename").Value

 iPlayCount = rs.Fields("PlayCount").Value

 'Do some other processing here. eg: vg.Play_Start $RV_LINEID, sFilename

 'now update the database

 iPlayCount = iPlayCount + 1

 strDateTime = "#" & FormatDateTime(Now, vbShortDate) & " " & FormatDateTime

(Now, vbLongTime) & "#"

 cn.Execute "UPDATE AdList SET PlayCount=" & iPlayCount & ", LastPlayTime="

139

& strDateTime & " WHERE AdID=" & iAdID

 else

 'no records could be retrieved, we can specify to play something instead

here

 vg.Admin_TraceLogAdd $RV_LINEID, 5, "vbs no records found"

 end if

else

 vg.Admin_TraceLogAdd $RV_LINEID, 5, "vbs connection to Ads.mdb could not be

made"

end if

cn.Close

Set rs = Nothing

Set cn = Nothing

Set vg = Nothing

Example : MS SQL Server Database read/write

A script like this can be used :

set vg = CreateObject("vgServices.CommandLink")

set cn = CreateObject("ADODB.Connection")

set rs = CreateObject("ADODB.Recordset")

cn.Open "Provider=SQLOLEDB;Server=DBSERVER1;UID=user;PWD=user;Database=Ads"

'MSSQL authentication

if cn.State <> 1 then

 vg.Admin_TraceLogAdd iLineId, 5, "login LeadingAd connection to database

could not be made"

 vg.Run_ResultReturn iLineId, "fail"

else

 set rs.ActiveConnection = cn

 sSQL = "SELECT TOP 1 AdID, Filename, PlayCount, LastPlayTime FROM AdList

WHERE PlayCount < PlayCountMax AND Active <> 0 ORDER BY LastPlayTime"

 rs.Open sSQL, cn, 3

 if rs.RecordCount <= 0 then

 rs.Close

 vg.Admin_TraceLogAdd iLineId, 5, "no records retrieved"

 else

 iAdID = rs.Fields("AdID").Value

140

 sFilename = rs.Fields("Filename").Value

 iPlayCount = rs.Fields("PlayCount").Value

 dateLastPlayTime = rs.Fields("LastPlayTime").Value

 rs.Close

 sSQL = "UPDATE AdList SET PlayCount=" & iPlayCount & ", LastPlayTime=" &

 strDateTimeNow & " WHERE AdID=" & iAdID

 vg.Admin_TraceLogAdd iLineId, 5, "sql=[" & sSQL & "]"

 cn.Execute sSQL

 sSQL = "INSERT INTO PlayLog (AdID, CallID, PlayDateTime, PlayedFrom)

VALUES (" & iAdID & ", 0, " & strDateTimeNow & ", 'AnswerCall')"

 vg.Admin_TraceLogAdd iLineId, 5, " sql=[" & sSQL & "]"

 cn.Execute sSQL

 end if

 cn.Close

end if

set rs = Nothing

set cn = Nothing

set vg = Nothing

Example : Stored Procedure defined in the database (no parameters).

Let's assume that you have defined in your database a stored procedure names

RetrieveUserNames that returns a recordset but takes no parameters. (note this example

assumes that the database connection cn and VG.CommandLink are defined outside this

function) The following code will retrieve the records.

set cmd = CreateObject("ADODB.Command")

set rs = CreateObject("ADODB.Recordset")

With cmd

 .ActiveConnection = cn

 .CommandType = adCmdStoredProc

 .CommandText = "RetrieveUserNames"

 Set rs = .Execute

 'you can now access the individual fields in the recordset rs

End With

Set cmd = Nothing

Set rs = Nothing

Example : Stored Procedures defined in the database (with parameters).

141

Let's assume that you have defined in your database a parameterized stored procedure query

named UpdateUser as follows:

UPDATE USERS

SET USERS.FIRSTNAME = [inFirstName], USERS.MIDDLEINITIAL = [inMiddleInitial],

USERS.LASTNAME = [inLastName], USERS.DEPARTMENT = [inDepartment],

USERS.EMAIL = [inEMail], USERS.TELEPHONE = [inTelephone],

USERS.EXTENSION = [inExtension]

WHERE (((USERS.USERNAME)=[inUserName]));

You should probably use a function like this as part of our VBScript to run this stored

procedure (note this example assumes that the database connection and VG.CommandLink are

defined outside this function):

Public Function UpdateUser(ByRef cn As Connection, ByVal Firstname As String,

ByVal MiddleInitial As String, _

 ByVal LastName As String, ByVal Department As

String, ByVal Email As String, _

 ByVal Telephone As String, ByVal Extension As

String, ByVal UserName As String) As Boolean

 Const adParamInput = 1

 Const adParamOutput = 2

 Const adInteger = 3

 Const adCmdStoredProc = 4

 Const adExecuteNoRecords = 128

 Const adVarChar = 200

 Set cmd = CreateObject("ADODB.Command")

 Dim lngRecordsAffected As Long

 With adoCmd

 .ActiveConnection = cn

 .CommandType = adCmdStoredProc

 .CommandText = "UpdateUser"

 .Parameters.Append .CreateParameter("inFirstName", adVarChar,

adParamInput, 50, Firstname)

 .Parameters.Append .CreateParameter("inMiddleInitial", adVarChar,

adParamInput, 2, IIf(Len(MiddleInitial) > 0, MiddleInitial, Null))

 .Parameters.Append .CreateParameter("inLastName", adVarChar,

adParamInput, 50, LastName)

 .Parameters.Append .CreateParameter("inDepartment", adVarChar,

adParamInput, 50, IIf(Len(Department) > 0, Department, Null))

 .Parameters.Append .CreateParameter("inEmail", adVarChar, adParamInput,

50, IIf(Len(Email) > 0, Email, Null))

142

 .Parameters.Append .CreateParameter("inTelephone", adVarChar,

adParamInput, 50, IIf(Len(Telephone) > 0, Telephone, Null))

 .Parameters.Append .CreateParameter("inExtension", adVarChar,

adParamInput, 10, IIf(Len(Extension) > 0, Extension, Null))

 .Parameters.Append .CreateParameter("inUserName", adVarChar,

adParamInput, 50, UserName)

 .Execute lngRecordsAffected, , adExecuteNoRecords

 UpdateUser = CBool(lngRecordsAffected)

 End With

 Set cmd = Nothing

End Function

The only thing you need to do is to match the order and data type of the parameters that are

'appended' to the command object with

those of the MS Access query.

Example : Retrieving data from an ASMX / SOAP Web Service

NOTE: The VoiceGuide Web Service module is the recommended way of querying web

services.

The VBScript below retrieves the WSDL from the ASMX / SOAP Web Service provided by

cdyne.com, and then calls the Web Service function GetCityWeatherByZIP.

In this example the ZIP code 10004 (New York, NY) was used.

Returned data is then formatted as a Result Variable list and returned to VoiceGuide.

Microsoft's SOAP Toolkit must be installed on system to use the MSSOAP.SoapClient30 COM

object.

Set soapClient = CreateObject("MSSOAP.SoapClient30")

soapClient.MSSoapInit "http://wsf.cdyne.com/WeatherWs/Weather.asmx?WSDL"

Set node_list = soapClient.GetCityWeatherByZIP(10004)

For Each node In node_list

 sRv = sRv & "[" & node.nodeName & "]{" & node.Text & "}"

Next

set soapClient = Nothing

143

set node_list = Nothing

'MsgBox sRv

set vg = CreateObject("vgServices.CommandLink")

vg.Run_ResultReturn $RV_LINEID, sRv

set vg = Nothing

The Result Variables list returned would be something like this:

[Success]{true}[ResponseText]{City Found}[State]{NY}[City]{New York}

[WeatherStationCity]{White Plains}[WeatherID]{4}[Description]{Sunny}

[Temperature]{46}[RelativeHumidity]{17}[Wind]{NW16G26}[Pressure]{30.20F}

[Visibility]{}[WindChill]{}[Remarks]{}

Example : Retrieving data from a HTTP / REST Web Service using HTTP GET

NOTE: The VoiceGuide Web Service module is the recommended way of querying web

services.

Request to a Web Service can be made directly to the service/function URL.

eg. a GET call to cdyne.com GetCityWeatherByZIP function can be made directly to this

HTTP address:

http://wsf.cdyne.com/WeatherWs/Weather.asmx/GetCityWeatherByZIP?ZIP=10004 and

since the GetCityWeatherByZIP function returns data in XML format we can use the XML

functions to to extract the required data.

Set Server = CreateObject("MSXML2.ServerXMLHttp")

Server.open "GET", "http://wsf.cdyne.com/WeatherWs/Weather.asmx/

GetCityWeatherByZIP?ZIP=10004", False

Server.setRequestHeader "Content-Type", "text/xml"

Server.send

set objXMLDoc = Server.responseXML

'MsgBox Server.Status & " " & Server.StatusText & vbCrLf & objXMLDoc.xml

Set objChildNodes = objXMLDoc.documentElement.childNodes

For Each node In objChildNodes

 sRv = sRv & "[" & node.nodeName & "]{" & node.Text & "}"

Next

144

'MsgBox sRv

set vg = CreateObject("vgServices.CommandLink")

vg.Run_ResultReturn $RV_LINEID, sRv

set vg = Nothing

Example : Uploading data to HTTP / REST Web Service using HTTP POST

NOTE: The VoiceGuide Web Service module is the recommended way of querying web

services.

Request to a Web Service can be made directly to the service/function URL.

eg. a POST call to cdyne.com GetCityWeatherByZIP function can be made directly to this

HTTP address:

http://wsf.cdyne.com/WeatherWs/Weather.asmx/GetCityWeatherByZIP

and since the GetCityWeatherByZIP function returns data in XML format

we can use the XML functions to to extract the required data.

Set Server = CreateObject("MSXML2.ServerXMLHttp")

Server.open "POST", "http://wsf.cdyne.com/WeatherWs/Weather.asmx/

GetCityWeatherByZIP", False

Server.setRequestHeader "Content-Type", "application/x-www-form-urlencoded"

Server.send("ZIP=10004")

set objXMLDoc = Server.responseXML

'MsgBox Server.Status & " " & Server.StatusText & vbCrLf & objXMLDoc.xml

Set objChildNodes = objXMLDoc.documentElement.childNodes

For Each node In objChildNodes

sRv = sRv & "[" & node.nodeName & "]{" & node.Text & "}"

Next

'MsgBox sRv

set vg = CreateObject("vgServices.CommandLink")

vg.Run_ResultReturn $RV_LINEID, sRv

set vg = Nothing

145

eg. a new ticket in the zendesk.com system can be created using a HTTP POST call to

URI:

https://yourname.zendesk.com/api/v1/tickets.xml

with ticket data provided as data attached to the POST:

sPostData = "<ticket><subject>Ticket from VoiceGuide</

subject><description>Please call back $RV_CIDNUMBER</description></ticket>"

Set Server = CreateObject("MSXML2.ServerXMLHttp")

Server.open "POST", "https://yourname.zendesk.com/api/v1/tickets.xml",

False, "youruser", "yourpassword"

Server.setRequestHeader "Content-Type", "application/xml"

Server.send sPostData

set objXMLDoc = Server.responseXML

MsgBox Server.Status & " " & Server.StatusText & vbCrLf & objXMLDoc.xml

set vg = CreateObject("vgServices.CommandLink")

vg.Run_ResultReturn $RV_LINEID, "[Server.Status]{" & Server.Status & "}

[Server.StatusText]{" & Server.StatusText & "]"

set vg = Nothing

Example : Screen Scraping from Web Page

If the required information is not available through a web service but is shown on the web

page itself, a screen-scraping approach can be used.

The VBScript below retrieves stock market levels from www.finance.yahoo.com and returns

this data to VoiceGuide. (Please see the Web Site Scraping demo script).

Set IE = CreateObject("InternetExplorer.Application")

With IE

 .RegisterAsDropTarget = False

146

 .Visible = False

 .Silent = True

 .Navigate("finance.yahoo.com")

 While .Busy

 'sleep

 Wend

 With .Document.Body

 readWwwHtml = .InnerHTML

 readWwwText = .InnerText

 End With

End With

IE.Quit

Set IE = Nothing

iIndexDow = GetIntegerAfterLabel("Dow")

iIndexNasdaq = GetIntegerAfterLabel("Nasdaq")

iIndexSP500 = GetIntegerAfterLabel("S&P 500")

strResultVariables= "[MarketDow]{" & iIndexDow & "}" & _

"[MarketNasdaq]{" & iIndexNasdaq & "}" & _

"[MarketSP500]{" & iIndexSP500 & "}"

'make sure the returned data does not contain any commas

strResultVariables = replace(strResultVariables, ",", "")

set vg = CreateObject("vgServices.CommandLink")

vg.Run_ResultReturn $RV_LINEID, strResultVariables

Set vg = Nothing

function GetIntegerAfterLabel(strLabel)

 'it is assumed that the integer terminates with a decimal point

 iLblPos1= Instr(readWwwText, strLabel)

 iValuePos1 = iLblPos1 + len(strLabel)

 iValuePos2 = Instr(iValuePos1, readWwwText, ".")

 GetIntegerAfterLabel = mid(readWwwText, iValuePos1, iValuePos2-iValuePos1)

end function

Other Resources:

http://en.wikipedia.org/wiki/VBScript

http://www.visualbasicscript.com

147

http://www.youtube.com/watch?v=oRM5osg7gGs

http://www.visualbasicscript.com

http://www.youtube.com/watch?v=orm5osg7ggs
http://www.visualbasicscript.com

148

Call Web Service

This module lets VoiceGuide communicate with Web Services.

For http Web Services the following HTTP request types can be selected:

DELETE

GET

POST

PUT

UPDATE

Module supports setting of:

URL Address

Authentication

Post Data

Headers

After issuing the request to the Web Service, VoiceGuide can:

 Continue, without waiting for web service query to complete.

 Wait until web service query completes.

 Wait until web service query and sound file completes.

Continue, without waiting for web service to complete : VoiceGuide will immediately continue down

the "Success" path once the web service query was started successfully. If web service query could

not be started successfully then the "Fail' path is taken. If the path that VoiceGuide should be

following is not defined then VoiceGuide will hang up the call.

Wait until web service query completes : VoiceGuide will wait until the web service query completes.

149

Any sound files still playing when the web service query completes will be stopped.

Wait until web service and sound file completes : VoiceGuide will wait until the web service

completes and until the sound file playing completes.

Limiting maximum execution time

To limit the length of time the system waits for the web service to return, a Timeout Path should be

defined. If the web service does not return before the timeout occurs the web service query will be

terminated and the timeout path will be taken. The timeout value is in seconds and should be set to

a value of 1 or higher.

Play Tab

If "Wait Until Web Service Completes" option is selected, the sound file specified in the Play tab will

be played while the web service query is performed.

Using Result Variables

Before running the web service VoiceGuide will first see if there are any Result Variables specified

within the web service's HTTP address (URI), Post Data, Headers etc. and if present then

VoiceGuide will first replace them with their current values.

If the Result Variable is not defined then VoiceGuide will replace it with an empty string.

Returned Result Variables

Data retuned by Web Service is saved in Result Variables available for use throughout remainder of

the call. The Headers of the returned response are also saved as Result Variables.

Paths

The following are valid path options:

Success/Fail

HTTP Response Codes

Timeout

eg: The following HTTP Response Code paths are all valid:

on {200} goto [Say all went OK]

on {OK} goto [Say all went OK]

on {406} goto [Say trans not accepted]

on {Not Acceptable} goto [Say trans not accepted]

150

Script Examples

Sample script excerpts are provided in VoiceGuide's \Scripts\Web Service\ subdirectory. Script

provided there demonstrate the use of the various HTTP request methods from within the

VoiceGuide Web Service module.

Example : GET Request : Get Weather by ZIP code

Cdyne Corp. provides a web service that can be used to retrieve weather information at a particular

ZIP code. The Web service can be called using the a HTTP GET request to the following URI:

http://wsf.cdyne.com/WeatherWS/Weather.asmx/GetCityWeatherByZIP?ZIP=[zip code]

eg:

http://wsf.cdyne.com/WeatherWS/Weather.asmx/GetCityWeatherByZIP?ZIP=10005

The response to this HTTP GET request is:

<?xml version="1.0" encoding="utf-8" ?>

<WeatherReturn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://

www.w3.org/2001/XMLSchema" xmlns="http://ws.cdyne.com/WeatherWS/">

<Success>true</Success>

<ResponseText>City Found</ResponseText>

<State>NY</State>

<City>New York</City>

<WeatherStationCity>White Plains</WeatherStationCity>

<WeatherID>4</WeatherID>

<Description>Sunny</Description>

<Temperature>46</Temperature>

<RelativeHumidity>17</RelativeHumidity>

<Wind>NW16G26</Wind>

<Pressure>30.20F</Pressure>

<Visibility />

<WindChill />

<Remarks />

</WeatherReturn>

The following Result Variables would be created by VoiceGuide for this response:

$RV[Success] - "true"

$RV[ResponseText] - "City Found"

$RV[State] - "NY"

$RV[City] - "New York"

$RV[WeatherStationCity] - "White Plains"

$RV[WeatherID] - "4"

$RV[Description] - "Sunny"

$RV[Temperature] - "46"

151

$RV[RelativeHumidity] - "17"

$RV[Wind] - "NW16G26"

$RV[Pressure] - "30.20F"

$RV[Visibility] - ""

$RV[WindChill] - ""

$RV[Remarks] - ""

The above Result Variables can then be used for the remainder of the call.

Example : POST Request : Add Ticket to Zendesk

Zendesk (http://www.zendesk.com/) provides a HTTP REST API.

Following example shows show VoiceGuide's Web Service module can be used to add a new ticket

to your Zendesk account:

NB. this POST request will require authentication, and hence would require that your own Zendesk

account is set up first. The URL would need to be modified accordingly.

Example : POST Request to ASMX Web Service

Issuing a SOAP 1.2 POST request to an ASMX Web Service:

http://www.zendesk.com/

152

153

Then SOAP XML structures to use is displayed when the Web Services' ASXM URL is viewed in a web

browser.

Most ASMX Web Services support SOAP 1.2 format. Issuing a SOAP 1.1 format POST request is only

slightly different:

154

155

156

Time Switch

This module is used to direct the caller to a different part of the script based on Date or Time of Day.

The screenshot above shows a time range to covering 9am till 5pm on Saturday and Sunday. The

Date/Time to Check field is left blank so the current time when the script is executed will be used.

When specifying the 'times on selected days' the start time must be earlier in the day then the stop

time.

Paths Chosen

The path "True" is taken if the current time falls within the specified time range, otherwise the

"False" path is taken.

Date/Time to Check

Most of the time this field will be left blank as usually the intention is to check what is the current

time and if it falls within the specified time range.

If the module is used to check whether a date/time entered by caller or retrieved from the database

falls within a certain range then the date to be checked should be specified in this text field.

The format in which the date is to be specified will vary according to your computers settings for

preferred date/time format. If specifying date and time then usually one of the following formats will

be OK (hours are specified in a 24 hour format) :

MM/DD, YYYY HH:NN

DD/MM, YYYY HH:NN

157

MM/DD/YYYY HH:NN

DD/MM/YYYY HH:NN

HH:NN

If the date is not specified then current date is used.

How can the caller enter date/time? Usually by just entering the require information in a series of

Get Numbers modules and then having all the data entered specified in the Date/Time to Check, eg:

$RV[GetMonth]/$RV[GetDay], $RV[GetYearYYYY] $RV[GetHour24]:00

If date is retrieved from database you should ensure that the correct format is supplied.

If the date/time format supplied is invalid then the "False" path is taken.

Note

Evaluate Expression module can also be used to set up time-switching.

158

Transfer Call

The Transfer Call module will transfer the call to another extension or telephone number.

All types of call transfers are supported:

'Hookflash' transfers

'Dial and Conference' / 'Trombone' / 'Bridge' transfers

TBCT transfers (used on ISDN trunks)

SIP REFER transfers (used on VoIP - SIP)

The 'Dial and Conference' ('Trombone' / 'Bridge') transfer uses two lines for the entire length of the

call. In all other transfers types the line becomes free to take another call as soon as the transfer is

made.

All PBXs support hookflash transfers, and some phone companies support hookflash transfers as

well. You will need to check with your phone company to see if it supports hookflash transfers on

it's lines. If your system is using telephone lines which do not support hookflash transfers and you

do not have a PBX then you will need to use the "Dial and Conference" (Trombone / Bridge) transfer

method.

When specifying the number to dial you can use commas ',' to indicate pauses in the dialing

sequence, ie: to allow a pause between the hookflash and the telephone number being dialed add

a couple of commas before the phone number. (eg: the text box in the screenshot above would

read ",,8843

159

Note that this can only be done on analog lines. On ISDN and VoIP connections commas cannot be

used.

Result Variables can be used when specifying the telephone number or extension.

Hookflash Transfer - Blind

1.Dials the signal specified (usually just a hookflash),

2.Dials the telephone number,

3.Hangs up immediately

The caller will now be connected to another extension. VoiceGuide no longer monitors the call.

Some PBXs/Switches require that the destination extension starts ringing before VoiceGuide can

hang up. When using such systems it may be necessary to add a comma or two at the end of the

destination number to make VoiceGuide pause for a while after dialing the number and before

hanging up the call.

Some PBXs/Switches require that the destination extension is answered before VoiceGuide can

hangup. In such situations the "Announced" or "Monitored" transfer option will need to be used.

Hookflash Transfer - Monitored

1.Dials the signal specified (usually just a hookflash),

2.Dials the telephone number,

3.Listens to see if a call is answered by a human or an answering machine. If a human or

answering machine answer is detected then VoiceGuide hangs up, which completes the

transfer. If no answer is detected or the extension is busy then VoiceGuide will dial the

'retrieve call from announced transfer' signal (usually just a hookflash) and go down the Fail

path.

Hookflash Transfer - Announced

1.Dials the signal specified (usually just a hookflash),

2.Dials the telephone number,

3.Plays a message announcing the Caller's ID, and awaits the selection from the called person

whether to accept the call or not. "1" is used to accept the call, any other digit is used to

decline the call. If "VoiceGuide for Dialogic" is used then the announce message will only start

when VoiceGuide detects that the outgoing call has been answered.

4.If the call is accepted VoiceGuide will dial the 'complete announced call transfer' signal (usually

nothing is needed) and hang up and allow the two new parties to continue conversation. If

the Success path is defined then that path will be taken, but script should be designed in such

a way that VoiceGuide hangs up soon, so that the two parties can speak to one another. If

the call is declined, the called party does not answer, or the extension is busy then

VoiceGuide will dial the 'retrieve call from announced transfer' signal (usually just a hookflash)

and then the "Fail" path is taken. If other more appropriate path is defined then that path is

taken instead.

160

SIP REFER Transfer (RFC 3515)

VoiceGuide v7 can perform SIP transfers. All that is required to perform the RFC3515 REFER transfer

is to select "Blind Hookflash Transfer" option and type in the IP address of the transfer destination.

3 Way Conference - Blind

1.Dials the signal specified (usually just a hookflash),

2.Dials the telephone number,

3.Dials the signal as specified in 'Complete blind conference call' setting (usually "!3")

4.Waits until the call is finished.

VoiceGuide will take the Success path if it is defined, otherwise VoiceGuide will wait and hang up

when:

either party hangs up.

maximum conference time limit is reached (settable in VG.INI file)

digit "*" is pressed during conversation

3 Way Conference - Monitored

1.Dials the signal specified (usually just a hookflash),

2.Dials the telephone number,

3.Listens to see if a call is answered by a human or an answering machine. If a human or

answering machine answer is detected that VoiceGuide hangs up. If no answer is detected

then VoiceGuide will dial the 'retrieve call from announced transfer' signal (usually just a

hookflash).

4.If a human or answering machine answer is detected VoiceGuide will dial the 'complete

announced conference' signal (usually "!3"). Then if the Success path is defined then that path

will be taken, otherwise VoiceGuide will wait until end of call. If no answer is detected or the

extension is busy then VoiceGuide will dial the 'retrieve call from announced conference' signal

and then the Fail path is taken (If other more appropriate path is defined then that path is

taken instead).

If call is accepted VoiceGuide will take the Success path if it is defined, otherwise VoiceGuide will

wait and hang up when:

either party hangs up.

maximum conference time limit is reached (settable in VG.INI file)

digit "*" is pressed during conversation

3 Way Conference - Announced

1.Dials the signal specified (usually just a hookflash),

2.Dials the telephone number,

3.Plays a message announcing the Caller's ID, and awaits the selection from the called person

whether to accept the call or not. "1" is used to accept the call, any other digit is used to

decline the call. If "VoiceGuide for Dialogic" is used then the announce message will only start

when VoiceGuide detects that the outgoing call has been answered.

4.If the call is accepted VoiceGuide will dial the 'complete announced conference' signal (usually

161

"!3"). Then if the Success path is defined then that path will be taken, otherwise VoiceGuide

will wait until end of call. If the call is declined, the called party does not answer, or the

extension is busy then VoiceGuide will dial the “retrieve call from announced conference”

signal and then the Fail path is taken.

If call is accepted VoiceGuide will take the Success path if it is defined, otherwise VoiceGuide will

wait and hang up when:

either party hangs up.

maximum conference time limit is reached (settable in VG.INI file)

digit "*" is pressed during conversation

Dial and Conference - General Notes:

The D4PCIU* family cards do not support "Dial and Conference". You need a JCT or DMV series card

(eg. D/41JCT, D/120JCT, DMV160, D/240JCT, DMV600B etc.)

The ports which can be used to place the call can also be specified. The allowed posts need to be

specified in comma delimited format. eg: 2,3,4

If ports are not specified then any free port will be used.

VG Dialer add-on is required to use the "Dial and Conference" option.

End of call detection on analog lines is done by listening for disconnect tone. Some phone

companies hold off with playing the disconnect tone until some time after hangup, and sometimes

the time before the disconnect tone is played differs depending on whether the person who hung

up was the one who made the call or received the call.

To be able to hangup calls immediately the phone company must either play the disconnect tone

immediately after either party hangs up, or you should use T1/E1 ISDN lines. If the application

needs to detect the precise time of when either party hung up then T1/E1 ISDN lines should be

used.

Dial and Conference - Blind

1.Dials the second number on another line.

2.Connects the two calls together.

VoiceGuide will take the Success path if it is defined, otherwise VoiceGuide will wait and hang up

when:

busy

maximum conference time limit is reached (settable in VG.INI file)

digit "*" is pressed during conversation

Dial and Conference - Monitored

1.Dials the number on another line.

2.Listens to see if the outgoing call is answered by a human or an answering machine. If a

human or answering machine answer is detected then VoiceGuide connects the two calls

162

together. If an announce mesage is specified the announce mesage is played to the call

recipient before the call is connected.

If call is connected VoiceGuide will take the Success path if it is defined, otherwise VoiceGuide will

wait and hang up when:

busy

maximum conference time limit is reached (settable in VG.INI file)

digit "*" is pressed during conversation

Dial and Conference - Announced

1.Dials the second number on another line.

2.Waits until the outgoing call is answered. When call is answered VoiceGuide plays a message

announcing the Caller's ID, and awaits the selection from the called person whether to accept

the call or not. "1" is used to accept the call, any other digit is used to decline the call.

If call is accepted VoiceGuide will take the Success path if it is defined, otherwise VoiceGuide will

wait and hang up when:

busy

maximum conference time limit is reached (settable in VG.INI file)

digit "*" is pressed during conversation

Two B-Channel Transfer (TBCT)

VoiceGuide v7 can perform TBCT transfers on ISDN lines which support this feature. To perform a

TBCT transfer a 'Dial and Conference' transfer type needs to be selected, and then in the 'Dial and

Conference Options' text box you need to include either:

<tbct_on>2ND_LEG_ALERTING</tbct_on>

or

<tbct_on>2ND_LEG_CONNECTED</tbct_on>

The <tbct_on>2ND_LEG_ALERTING</tbct_on> option will result in TBCT command being issued to the

switch at the time when the 2nd leg of the call is in Alerting phase (2nd number begins to ring), and

the <tbct_on>2ND_LEG_CONNECTED</tbct_on> option will result in TBCT commend being issued to the

switch at the time when the 2nd leg of the call has connected (2nd call was answered).

ACD Queue Transfer

ACD queues are supported in VoiceGuide v7 only.

Call can be placed in ACD queue, and from the queue the call will then be transferred to an agent

when the appropriate agent becomes available.

To place call in an ACD queue the following expression is used: acd:QueueName

eg:

163

acd:sales

VoiceGuide will search for agents that are qualified to receive calls from specified queue, and the

call is then connected (using a 'tromboned' connection) to the agent.

To receive ACD calls, agents need to use the 'VoiceGuide Agent' application on their PC.

'Announced' transfers timeout

The default length for how long VoiceGuide will await a confirmation to receive a call is 30 seconds.

If you would like to change this, specify a timeout path in the 'Announced' modules to indicate the

number of seconds you would like VoiceGuide to wait.

3 Way Conference Calls

3-Way Call Service must be enabled on the telephone line by the telephone company or PBX

administrator before you can use this feature.

Some telephone systems do not allow 3 Way Blind Conference Calling, and will only allow a 3 way

conference call connection to be made when the called person has answered the phone. In those

situations you must use the 3 Way Announced Conference Call option.

Many North American telephone networks allow immediate blind conferencing.

Dial and Conference Options

Following user settable fields are available in Trasnfer module when "Dial and Conference"

transfers are used:

On-hold sound file to play while connection is made

Line selection list

When to connect the two callers

Options

The Options field can be used to specify the outgoing CallerID used for the call by using the XML

syntax. eg: specifying <CallerId>5551234</CallerId> would result in CallerId to be set to 5551234

on outgoing calls. Note that the CallerID settings in Config.xml can be used to override the settings

made here as the Config.xml CallerId settings would take precedence.

Paths

The following paths can be taken from the module:

SUCCESS the call was transferred successfully

FAIL the call was not transferred, or transfer was declined

TIMEOUT there was a timeout awaiting for transfer to be
accepted (announced transfers only)

164

When using a Dialogic card the following paths can also be specified in the module:

BUSY number was busy

FAX call was answered by a fax

NOANSWER there was no answer

NODIALTONE there was no dialtone

NORINGBACK call was not answered and no ringback was heard

OPERATOR
SIT tone was heard indicating number is most likely
disconnected

CONNECT transfer completed successfully

AM
transfer completed successfully with Answering
Machine answering the call.

VOICE
transfer completed successfully with a live Human
answering the call.

CADENCE
transfer completed successfully based on cadence
analysis.

LOOPCURRENT
transfer completed successfully based on loop current
detection.

Result Variables

For Tromboned transfers the following $RVs are created on both lines:

$RV[Conf_DevName_1]

$RV[Conf_LineId_1]

$RV[Conf_LineNbr_1]

$RV[ModuleTitle_DevName_1]

$RV[ModuleTitle_LineId_1]

$RV[ModuleTitle_LineNbr_1]

$RV[Conf_DevName_2]

$RV[Conf_LineId_2]

$RV[Conf_LineNbr_2]

$RV[ModuleTitle_DevName_2]

$RV[ModuleTitle_LineId_2]

$RV[ModuleTitle_LineNbr_2]

These $RVs can be further used to manage the connected calls in the future. vgEngine trace file

contains more information on other $RVs created during the call transfer process.

Troubleshooting

If the call transfers are not working for you please go through this checklist:

1.Can you do the call transfer manually on that line using a normal telephone handset?

2.Is the hookflash the right length? (ie. is the original caller placed on hold?)

3.Do settings in VG's "PBX Command Strings" config screen match the keys you need to press

when doing it manually?

4.If transfers are still not working please post a question on our online Support Forum.

165

a) Full detailed step-by-step description of how you just did the call transfer manually on this system,

b) Your VoiceGuide script

c) VG.INI file, and

d) Copy of the trace log capturing the entire call.

Note:

If your system requires other specialized PBX signaling keep in mind that Hookflash and DTMF

signals can also be generated using the “Play” module.

“!” is used to generate a hookflash and digits are used to generate DTMF tones.

Timeout paths between successive Play modules can be used if specific delays between successive

PBX signals are required.

166

Evaluate Expression

Used to direct the script to a different module based on the value of Result Variable, Boolean

expression or an Arithmetic expression specified. This module is used when the call is to go to

different parts of script depending on:

Caller ID

Time and Date of the call

Information entered by caller

Information retrieved using DB Query / Web Service / Run Program / Run Script modules

Any VBScript expression (see here for complete list of functions)

The result of the evaluated expression will be assigned to the $RV[module title] Result Variable.

Optionally the result can also be assigned to a user specified Result Variable. This is useful when

implementing counters or other more advanced call flow management.

The name of the user specified Result Variable can be anything. The user specified variable can be

accessed in other parts of the script using $RV[user specified variable] format.

Selecting "Make Global RV" will make the created variable a "Global Result Variable". Global RVs

need only be used if many different lines want to be able to read/set a central globally available

variable which is retained by VoiceGuide as long as the software is running and does not get reset

when any new calls arrive on any lines. (This option is used only in rare circumstances).

Selecting the "Store results in log file" option will ensure the results will be stored along with other

call details. If the option is not selected the Result Variables will still be accessible within other parts

of the script, but they will not be saved in the call log.

Paths Chosen:

If a Result Variable or an Arithmetic expression is specified:

if any of the paths match the result exactly then that path will be taken.

If none of the Paths match the value exactly, but the result is non-empty then the "True" path

will be taken.

If the result is empty, then the False path will be taken.

If a Boolean expressionis specified:

A True or a False path will be taken depending on what was the result of the expression.

Example 1:

The Evaluate Expression can be used to switch to different parts of the script based on Caller ID. To

switch based on the caller's phone number use $RV_CIDNUMBER as the Result Variable to be

evaluated :

167

And when specifying the paths, use the telephone number in the { } section.

eg: If $RV_CIDNUMBER was used, and you want to handle calls from number 5625551234 in a special

way, the path to send all the calls from this number to a particular module would be:

On {5625551234} Goto [List Administrator Options]

you could also use:

on {} goto [NoCallerId]

or

on {False} goto [NoCallerId]

both of which will match if CallerID number is blank.

on {True} goto [CallerIdWasSent]

will be taken if CallerID was provided but no specified path explicitly matched the number:

168

Example 2:

The Evaluate Expression module is used to check the PIN entered in previous Get Number module

titled "Get PIN".

And the paths in this case are defined as:

169

What do the paths do:

On {False} Goto [Get PIN]
If for some reason no PIN was entered, and $RV[Get

PIN] holds no numbers, then goto the Get PIN module

On {1234} Goto [Voicemail Box 2032] Return [Main

Menu]

If the entered PIN was 1234 then go to the Voicemail

box number 2032, and then when the caller has

finished leaving the message return the caller to the

Main Menu module

On {5678} Goto [Voicemail Box 8423] Return [Main

Menu]

If the entered PIN was 5678 then go to the Voicemail

box number 8423, and then when the caller has

finished leaving the message return the caller to the

Main Menu module

On {True} Goto [Invalid PIN]

A PIN was entered and $RV[Get PIN] does hold some

entered number, but that number does not match

exactly any of the paths specified. Go to the Invalid

PIN module.

It is a good idea to always specify the TRUE and FALSE paths, since VoiceGuide will hang up the call

if it cannot find a valid path to go to the next module.

Example 3:

The Evaluate Expression module can also be used to perform calculations.

Eg: To calculate whether the number of widgets ordered is more then the available amount you can

use the following expression:

($RV[LokupStockAvail_1_1]- $RV[GetOrderAmount]) >= 0

A True or a False path will be taken depending on what was the result of the expression.

Example 4:

The Evaluate Expression module can also be used to compare strings. An example of valid

170

expression to evaluate is:

"$RV[DB_Retrieve_1_1]"="Available"

A True or a False path will be taken depending on what was the result of the above expression

Example 5:

If you need to evaluate a Result Variable that holds a string, and select different paths depending

on the string’s value then the string will need to be specified using quotes or “CStr()” function:

"$RV[DB_Retrieve_1_1]"

or:

Cstr($RV[DB_Retrieve_1_1])

you will need to use and use the different possible values of this variable when specifying the On

(‘Paths’ where the script

Example 6:

The “+” or the “&” operator can also be used to concatenate strings together.

eg: The following is a valid expression to use:

["1_" & Cstr($RV_DAY) & "_2"]

The result is going to be(on a Saturday):

1_6_2

Example 7:

If comparing dates the # character should be used around the date expressions.

eg: The following expression determines if current date is between 7th July 2017 and 31 December

2018:

(#7/7/2017# <= #$RV_MONTH/$RV_DATE/$RV_YEAR#) and (#$RV_MONTH/$RV_DATE/$RV_YEAR# <=

#31/12/2018#)

Example 8:

To add the value of the number entered in module "GetValue1" to the value of the number entered

in module "GetValue2" the following expression would be used:

$RV[GetValue1] + $RV[GetValue2]

The result will be assigned to the result variable name for the module, or can be assigned to a

Result Variable specified in the "Assign result to following Result Variable" field.

Example 9:

171

Evaluate expression can be used as a sophisticated Time-Switch as well. eg. To check if the current

day is either New Year's Day or Christmas Day the following expression can be used:

(("$RV_DD" = "01") and ("$RV_MM" = "01")) or (("$RV_DD" = "25") and ("$RV_MM" = "12"))

Example 10:

Evaluate Expression module can be used to implement a counter to check the number of times the

caller goes though certain parts of the call flow. This example demonstrates how a counter can be

implemented.

A user defined Result Variable is created and its value is set to zero. Note that as the Result

Variable was assigned a value of 0, the 'False' path will be taken from this module.

The counter in incremented by retrieving the current value of the user defined Result Variable,

adding 1 to this current value, and then saving the result back into the user defined Result Variable.

172

The value saved by this Evaluate Expression module is then used in the Paths section to determine

the next module the script should branch to.

List of functions which can be used:

Any VBScript type expression can be evaluated using the Evaluate Expression module. The full list of

functions/operators/constants/keywords etc which can be used can be found at:

http://www.w3schools.com/asp/asp_ref_vbscript_functions.asp

http://www.w3schools.com/asp/asp_ref_vbscript_functions.asp

173

Functions which can be used in the Evaluate Expression module:

Date/Time
Functions

CDate Converts a valid date and time expression to the variant of subtype Date

Date Returns the current system date

DateAdd Returns a date to which a specified time interval has been added

DateDiff Returns the number of intervals between two dates

DatePart Returns the specified part of a given date

DateSerial Returns the date for a specified year, month, and day

DateValue Returns a date

Day Returns a number that represents the day of the month (between 1 and 31,
inclusive)

FormatDateTime Returns an expression formatted as a date or time

Hour Returns a number that represents the hour of the day (between 0 and 23,
inclusive)

IsDate Returns a Boolean value that indicates if the evaluated expression can be
converted to a date

Minute Returns a number that represents the minute of the hour (between 0 and 59,
inclusive)

Month Returns a number that represents the month of the year (between 1 and 12,
inclusive)

MonthName Returns the name of a specified month

Now Returns the current system date and time

Second Returns a number that represents the second of the minute (between 0 and 59,
inclusive)

Time Returns the current system time

Timer Returns the number of seconds since 12:00 AM

TimeSerial Returns the time for a specific hour, minute, and second

TimeValue Returns a time

Weekday Returns a number that represents the day of the week (between 1 and 7,
inclusive)

WeekdayName Returns the weekday name of a specified day of the week

Year Returns a number that represents the year

Conversion
Functions

Asc Converts the first letter in a string to ANSI code

CBool Converts an expression to a variant of subtype
Boolean

CByte Converts an expression to a variant of subtype Byte

CCur Converts an expression to a variant of subtype

http://www.w3schools.com/asp/func_cdate.asp
http://www.w3schools.com/asp/func_date.asp
http://www.w3schools.com/asp/func_dateadd.asp
http://www.w3schools.com/asp/func_datediff.asp
http://www.w3schools.com/asp/func_datepart.asp
http://www.w3schools.com/asp/func_dateserial.asp
http://www.w3schools.com/asp/func_datevalue.asp
http://www.w3schools.com/asp/func_day.asp
http://www.w3schools.com/asp/func_formatdatetime.asp
http://www.w3schools.com/asp/func_hour.asp
http://www.w3schools.com/asp/func_isdate.asp
http://www.w3schools.com/asp/func_minute.asp
http://www.w3schools.com/asp/func_month.asp
http://www.w3schools.com/asp/func_monthname.asp
http://www.w3schools.com/asp/func_now.asp
http://www.w3schools.com/asp/func_second.asp
http://www.w3schools.com/asp/func_time.asp
http://www.w3schools.com/asp/func_timer.asp
http://www.w3schools.com/asp/func_timeserial.asp
http://www.w3schools.com/asp/func_timevalue.asp
http://www.w3schools.com/asp/func_weekday.asp
http://www.w3schools.com/asp/func_weekdayname.asp
http://www.w3schools.com/asp/func_year.asp
http://www.w3schools.com/asp/func_asc.asp
http://www.w3schools.com/asp/func_cbool.asp
http://www.w3schools.com/asp/func_cbyte.asp
http://www.w3schools.com/asp/func_ccur.asp

174

Currency

CDate Converts a valid date and time expression to the
variant of subtype Date

CDbl Converts an expression to a variant of subtype
Double

Chr Converts the specified ANSI code to a character

CInt Converts an expression to a variant of subtype
Integer

CLng Converts an expression to a variant of subtype Long

CSng Converts an expression to a variant of subtype
Single

CStr Converts an expression to a variant of subtype
String

Hex Returns the hexadecimal value of a specified
number

Oct Returns the octal value of a specified number

Format Functions

FormatCurrency Returns an expression formatted as a currency value

FormatDateTime Returns an expression formatted as a date or time

FormatNumber Returns an expression formatted as a number

FormatPercent Returns an expression formatted as a percentage

Math Functions Top

Abs Returns the absolute value of a specified number

Atn Returns the arctangent of a specified number

Cos Returns the cosine of a specified number (angle)

Exp Returns e raised to a power

Hex Returns the hexadecimal value of a specified
number

Int Returns the integer part of a specified number

Fix Returns the integer part of a specified number

Log Returns the natural logarithm of a specified number

Oct Returns the octal value of a specified number

Rnd Returns a random number less than 1 but greater or
equal to 0

Sgn Returns an integer that indicates the sign of a
specified number

Sin Returns the sine of a specified number (angle)

Sqr Returns the square root of a specified number

http://www.w3schools.com/asp/func_cdate.asp
http://www.w3schools.com/asp/func_cdbl.asp
http://www.w3schools.com/asp/func_chr.asp
http://www.w3schools.com/asp/func_cint.asp
http://www.w3schools.com/asp/func_clng.asp
http://www.w3schools.com/asp/func_csng.asp
http://www.w3schools.com/asp/func_cstr.asp
http://www.w3schools.com/asp/func_hex.asp
http://www.w3schools.com/asp/func_oct.asp
http://www.w3schools.com/asp/func_formatcurrency.asp
http://www.w3schools.com/asp/func_formatdatetime.asp
http://www.w3schools.com/asp/func_formatnumber.asp
http://www.w3schools.com/asp/func_formatpercent.asp
http://www.w3schools.com/asp/vbscript_ref_functions.asp#top
http://www.w3schools.com/asp/func_abs.asp
http://www.w3schools.com/asp/func_atn.asp
http://www.w3schools.com/asp/func_cos.asp
http://www.w3schools.com/asp/func_exp.asp
http://www.w3schools.com/asp/func_hex.asp
http://www.w3schools.com/asp/func_int.asp
http://www.w3schools.com/asp/func_fix.asp
http://www.w3schools.com/asp/func_log.asp
http://www.w3schools.com/asp/func_oct.asp
http://www.w3schools.com/asp/func_rnd.asp
http://www.w3schools.com/asp/func_sgn.asp
http://www.w3schools.com/asp/func_sin.asp
http://www.w3schools.com/asp/func_sqr.asp

175

Tan Returns the tangent of a specified number (angle)

Array Functions Top

Array Returns a variant containing an array

Filter Returns a zero-based array that contains a subset of
a string array based on a filter criteria

IsArray Returns a Boolean value that indicates whether a
specified variable is an array

Join Returns a string that consists of a number of
substrings in an array

LBound Returns the smallest subscript for the indicated
dimension of an array

Split Returns a zero-based, one-dimensional array that
contains a specified number of substrings

UBound Returns the largest subscript for the indicated
dimension of an array

String Functions

InStr Returns the position of the first occurrence of one
string within another. The search begins at the first
character of the string

InStrRev Returns the position of the first occurrence of one
string within another. The search begins at the last
character of the string

LCase Converts a specified string to lowercase

Left Returns a specified number of characters from the
left side of a string

Len Returns the number of characters in a string

LTrim Removes spaces on the left side of a string

RTrim Removes spaces on the right side of a string

Trim Removes spaces on both the left and the right side
of a string

Mid Returns a specified number of characters from a
string

Replace Replaces a specified part of a string with another
string a specified number of times

Right Returns a specified number of characters from the
right side of a string

Space Returns a string that consists of a specified number
of spaces

StrComp Compares two strings and returns a value that
represents the result of the comparison

String Returns a string that contains a repeating character
of a specified length

StrReverse Reverses a string

UCase Converts a specified string to uppercase

http://www.w3schools.com/asp/func_tan.asp
http://www.w3schools.com/asp/vbscript_ref_functions.asp#top
http://www.w3schools.com/asp/func_array.asp
http://www.w3schools.com/asp/func_filter.asp
http://www.w3schools.com/asp/func_isarray.asp
http://www.w3schools.com/asp/func_join.asp
http://www.w3schools.com/asp/func_lbound.asp
http://www.w3schools.com/asp/func_split.asp
http://www.w3schools.com/asp/func_ubound.asp
http://www.w3schools.com/asp/func_instr.asp
http://www.w3schools.com/asp/func_instrrev.asp
http://www.w3schools.com/asp/func_lcase.asp
http://www.w3schools.com/asp/func_left.asp
http://www.w3schools.com/asp/func_len.asp
http://www.w3schools.com/asp/func_ltrim.asp
http://www.w3schools.com/asp/func_rtrim.asp
http://www.w3schools.com/asp/func_trim.asp
http://www.w3schools.com/asp/func_mid.asp
http://www.w3schools.com/asp/func_replace.asp
http://www.w3schools.com/asp/func_right.asp
http://www.w3schools.com/asp/func_space.asp
http://www.w3schools.com/asp/func_strcomp.asp
http://www.w3schools.com/asp/func_string.asp
http://www.w3schools.com/asp/func_strreverse.asp
http://www.w3schools.com/asp/func_ucase.asp

176

Other Functions

CreateObject Creates an object of a specified type

Eval Evaluates an expression and returns the result

IsEmpty Returns a Boolean value that indicates whether a
specified variable has been initialized or not

IsNull Returns a Boolean value that indicates whether a
specified expression contains no valid data (Null)

IsNumeric Returns a Boolean value that indicates whether a
specified expression can be evaluated as a number

IsObject Returns a Boolean value that indicates whether the
specified expression is an automation object

RGB Returns a number that represents an RGB color
value

Round Rounds a number

ScriptEngine Returns the scripting language in use

ScriptEngineBuildVersion Returns the build version number of the scripting
engine in use

ScriptEngineMajorVersion Returns the major version number of the scripting
engine in use

ScriptEngineMinorVersion Returns the minor version number of the scripting
engine in use

TypeName Returns the subtype of a specified variable

VarType Returns a value that indicates the subtype of a
specified variable

VBScript Keywords

Empty Used to indicate an uninitialized variable value. A
variable value is uninitialized when it is first created
and no value is assigned to it, or when a variable
value is explicitly set to empty.

Example:

Dim x 'the variable x is uninitialized!

x="ff" 'the variable x is NOT uninitialized anymore

x=Empty 'the variable x is uninitialized!

Note: This is not the same as Null!!

IsEmpty Used to test if a variable is uninitialized.

Example: If (IsEmpty(x)) 'is x uninitialized?

Nothing Used to indicate an uninitialized object value, or to
disassociate an object variable from an object to
release system resources.

Example: Set myObject=Nothing

Is Nothing Used to test if a value is an initialized object.

Example: If (myObject Is Nothing) 'is it unset?

http://www.w3schools.com/asp/func_createobject.asp
http://www.w3schools.com/asp/func_eval.asp
http://www.w3schools.com/asp/func_isempty.asp
http://www.w3schools.com/asp/func_isnull.asp
http://www.w3schools.com/asp/func_isnumeric.asp
http://www.w3schools.com/asp/func_isobject.asp
http://www.w3schools.com/asp/func_rgb.asp
http://www.w3schools.com/asp/func_round.asp
http://www.w3schools.com/asp/func_scriptengine.asp
http://www.w3schools.com/asp/func_scriptengine.asp
http://www.w3schools.com/asp/func_scriptengine.asp
http://www.w3schools.com/asp/func_scriptengine.asp
http://www.w3schools.com/asp/func_typename.asp
http://www.w3schools.com/asp/func_vartype.asp

177

Note: If you compare a value to Nothing, you will

not get the right result! Example: If (myObject =

Nothing) 'always false!

Null Used to indicate that a variable contains no valid
data.

One way to think of Null is that someone has

explicitly set the value to "invalid", unlike Empty

where the value is "not set".

Note: This is not the same as Empty or Nothing!!

Example: x=Null 'x contains no valid data

IsNull Used to test if a value contains invalid data.

Example: if (IsNull(x)) 'is x invalid?

True Used to indicate a Boolean condition that is correct
(True has a value of -1)

False Used to indicate a Boolean condition that is not
correct (False has a value of 0)

Operators which can be used in Evaluate Expression module:

Addition (+) Sum two numbers.

And Perform a logical conjunction on two expressions.

Assignment (=) Assign a value to a variable or property.

Concatenation (&) Force string concatenation of two expressions.

Division (/) Divide two numbers and return a floating point result.

Eqv Perform a logical equivalence on two expressions.

Exponentiation (^) Raise a number to the power of an exponent.

Imp Perform a logical implication on two expressions.

Integer Division (\) Divide two numbers and return an integer result.

Is Compare to object reference values.

Mod Divide two numbers and return the remainder.

Muliplication (*) Multiply two numbers.

Negation (-) Indicate the negative value of a numeric expression.

Not Perform logical negation of an expression.

Or Perform logical disjunction on two expressions.

Xor Perform a logical exclusion on two expressions.

Subtraction (-) Find the difference between two numbers.

178

Fax Send and Receive

VoiceGuide v7 can send and receive faxes. All current Dialogic cards support fax send and receive

functionality.

Sending Fax

A Play module can be used to send a fax. Just specify a PDF or TIFF or JPEG file as the file to be

"played" by a Play module. The Play module will begin fax transmission immediately if a .tif/.tiff/.pdf/

.jpg source file is specified.

Once fax sending is complete the success path will be taken and the script can continue. Please

note that the remote end will usually hangup after receiving the fax, so any post fax sending

updates etc. should be performed in the "After Hangup" script.

Its simplest if TIFF files are used for the outgoing fax. The TIFF file must be in "Fax Group 3" format

and have a horizontal resolution of 1728 pixels across the page. Vertical pixel count will depends on

length of fax page, but a standard page is 2200 pixels long. The DPI resolution of the TIFF file

should be 200. Some sample TIFF files are provided in the directories of the sample VoiceGuide

scripts that perform fax sending.

Any PDF file can be used as input as well. If faxing PDF files you must aggregate Ghostscript with

VoiceGuide by placing Ghostscript's gswin32c.exe and gsdll32.dll file into VoiceGuide's \gs\

subdirectory. Ghostscript can be downloaded from http://www.ghostscript.com

JPEG (.jpg) files are used if "Color Fax" needs to be sent. Please contact support@voiceguide.clom if

you need to send "Color Fax".

Receiving Fax

A Record module can be used to receive a fax. To make the Record module receive a fax just specify

the filename to end in .pdf suffix or end in .tif suffix. The Record module will begin fax reception

immediately if a .pdf target file or a .tif target file is specified.

The received fax is automatically saved both in in the PDF and in the TIFF file formats.

After receiving the fax VoiceGuide will create a PDF version of the received fax, and will also perform

OCR on the fax and scan the fax for any barcodes. The OCR text and text from decoded barcodes is

then stored as Result Variables. During OCR VoiceGuide will also try to identify the "To:" and

"From:" fields and make the text that follows them available through Result Variables as well.

VoiceGuide will also save the fax header line as a separate Result Variable.

The following Result Variables are created when a fax is received:

$RV[ModuleTitle_fax] Filename of the sent or received fax.

$RV[ModuleTitle_fax_pdf] Filename of the PDF file create after TIF->PDF
conversion.

$RV[ModuleTitle_fax_tif] Filename of the TIF file used as a source for PDF
conversion.

$RV[ModuleTitle_ocr] Full OCR of the received fax.

$RV[ModuleTitle_ocr_header] Fax Header line which usually contains the Date/Time,

http://www.ghostscript.com
mailto:support@voicegudie.clom

179

CSID (Call Subscriber ID), fax number, and page
number.

$RV[ModuleTitle_ocr_to_1] First word after the "To:"

$RV[ModuleTitle_ocr_to_2] First two words after the "To:"

$RV[ModuleTitle_ocr_from_1] First word after the "From:"

$RV[ModuleTitle_ocr_from_2] First two words after the "From:"

$RV[ModuleTitle_barcode_1] Contents of the first barcode encountered on the fax
page.

$RV[ModuleTitle_barcode_2] Contents of the second barcode encountered on the
fax page.

$RV[ModuleTitle_barcode_count] Number of barcodes found on the fax.

$RV[ModuleTitle_barcode_all] Contents of all the barcodes encountered on the fax
page, delimited by "|".

To have VoiceGuide save the PDF filed in 'searchable PDF' format please contact

sales@voiceguide.com

To install the barcode recognition add-on please contact sales@voiceguide.com

Fax Routing

The OCR and barcode decoding allow advanced automated fax routing to be done, automatically

forwarding the received document by:

Email

Printing to selected printer

Ftp

Re-faxing to another number (optionally with additional pages added to original fax)

any other processing called from command line or VBScript

Note that as the call is usually ended immediately after the fax is received, the fax routing should

be done from the "After Hangup" script. The "After Hangup" script can look at the OCR $RVs as well

as the $RVs containing the CallerID or the DNIS (number dialed by caller) and decide how to

forward the fax, and then perform the email or printing or loading of a new outbound call etc. This

allows fax routing to be done based on any combination of:

CallerID

DNIS

CSID (Call Subscriber ID) of the machine sending the fax

To: or From: fields in the received fax

Any other text in the received fax

Barcodes in the received fax

Time/Day etc

180

Send Phone Message

This module will make an outgoing call on another line to the phone number specified, and run the

specified script or sound file when the call is answered.<

Note: More advanced call scheduling features can be acccessed by loading the calls using the 'Out

Dial' XML file method, WCF/COM/REST interfaces, or inserting call data directly into the VoiceGuide

database. For more information on these methods of queuing outgoing calls please see here.

The Dialer option must be enabled to allow VoiceGuide to perform any outbound dialing.

You can specify the telephone number to call, the welcome message to play when the call has been

made, the VoiceGuide script to run once the call has been accepted, and custom Result Variables

which can be used by the called script.

Result Variables can be used when specifying any of the entries in this module. <>

Phone

The phone number to dial.

Welcome

Optional. Prompt played to caller caller to accept the call. The welcome message asks the called

person whether they want to accept the call or not. The called person should press '1' on their

telephone keypad to indicate that they want to accept the call. Hence any welcome message

should advise to 'Press 1' to accept the call'.

If the welcome message is not specified then the default VoiceGuide welcome message will be

played. If welcome message is set to 'none' then no welcome message will be played and

VoiceGuide will go directly to running the script.

181

Script

Which script will be ran once the call is accepted, or the sound file to be played.

Variables

Result Variables which can be accessed by the called script. Use these to pass any information (eg.

callers contact details) to the script which will be used when the outbound call is made. The format

of this field is [RvName]{RvValue}. Multiple Result variables can be specified by listing the name-

value pairs as needed.

In the properties page screen capture above we see that the caller's problem reference number is

being passed to the FirstLevelEscalation.vgs script. The reference number would have been

generated previously in module CallerRef, and $RV[CallerRef] will be replaced with the actual

reference number when the call is queued. The reference number can then be accessed using $RV

[CallerRefNumber] in the FirstLevelEscalation.vgs script.

Lines Used

If the outbound call may only be made on particular phone lines then these lines should be listed

here. Lines should be specified as a comma delimited list of "LineIDs" (eg: 6,7,8) or of the Dialogic

line identifiers (eg: dxxxB1C2,dxxxB1C3). If any of the lines are allowed to to be used then this

setting should be left blank.

Retries

The number times the number will be redialed before abandoning attempts to contact the number.

For example, if the number of retries is set to 2, with 5 minutes between redials then the phone

number will be called 3 times in total (1 call + 2 redials).

Escalation Dialing

In case VoiceGuide is unable to contact anybody at the first phone number supplied, alternative

phone numbers and scripts can be specified. This is useful if:

A person you want to contact can be under different numbers.

Problem escalation situations, where if one person is unavailable then further people will be

called until one of the people on the list answers the call.

Alternative Contact and Second Alternative Contact tabs are used to specify alternative contact

numbers. Once the number of retries for one number is exhausted, the next alternative number will

be dialed.

Notes:

For instructions on how to set your own escalation dialing without using the Make Call module, see

the VoiceGuide Dialer section of this help file.

Paths

The 'Success' path is taken if the call was scheduled. If for any reason the call could not be

182

scheduled, the 'Fail' path will be taken

Scheduling Calls

The Send Phone Message module schedules the call to be made immediately. If you need to

schedule a call to be made at a later time VoiceGuide's COM function Dialer_OutDialQueAdd needs

to be used. This function can be called from within a Run VB Script module.

The future date/time needs to be specified in format "YMMDDHHNN" in Dialer_OutDialQueAdd's

lActivateTime parameter.

eg. To specify a date/time exactly 3 days in future you can use the following VB Script snippet:

dDate = DateAdd("d", 3, Now)

sYear = Right(Year(dDate), 1)

sCallTime = sYear * 100000000 + Month(dDate) * 1000000 + Day(dDate) * 10000 + Hour(dDate)

* 100 + Minute(dDate)

and then you use sCallTime when calling Dialer_OutDialQueAdd

You can hard code the hour and minute settings if you want the call to be made at a cetein time. eg

to call at 10:30am the sCallTime formula would become:

sCallTime = sYear * 100000000 + Month(dDate) * 1000000 + Day(dDate) * 10000 + 1030

183

Send Pager Message

This module will queue a pager message to be sent.

VG Dialer option must be enabled to allow VoiceGuide to perform any outbound dialing and pager

message delivery.

The pager message will be sent as soon as VoiceGuide has a line available to make a call on. When

sending the message VoiceGuide will dial the Telephone number specified, and then will start

dialing the digits specified in the Message text box.

VoiceGuide will pause for a couple of seconds after dialing the telephone number and before dialing

the message. If this pause is not long enough, extra wait time can be specified by tying commas at

the beginning of the message. The example in the captured screen above has two commas.

The length of a pause generated by each comma differs from system to system and its best to

determine by trial and error the number of commas to use in order to have reliable pager message

delivery from your VoiceGuide system to your pager provider.

Also in the example above a Result Variable was used in the message. This shows how data

entered by the caller in one part of the script can be sent as part of a pager message.

Lines Used

If the outbound call may only be made on particular phone lines then these lines should be listed

here. Lines should be specified as a comma delimited list of "LineIDs" (eg: 6,7,8) or of the Dialogic

line identifiers (eg: dxxxB1C2,dxxxB1C3). If any of the lines are allowed to to be used then this

setting should be left blank.

Paths

184

The 'Success' path is taken if the call to the pager was scheduled. If for any reason the call could

not be scheduled, the 'Fail' path will be taken.

185

Hangup Call

Hangs up the current call.

On ISDN systems the 'cause value' which is sent at the time of call disconnection can be specified by

setting the $RV[DropCall_CauseValue]to hold the cause value tag. You can use the Evaluate

Expression module to assign a cause value to$RV[DropCall_CauseValue]

Valid cause values are:

Cause Value Tag Cause Value Description

ACCESS_INFO_DISCARDED Access information discarded

BAD_INFO_ELEM Information element nonexistent or not implemented

BEAR_CAP_NOT_AVAIL Bearer channel capability not available

CAP_NOT_IMPLEMENTED Bearer channel capability not implemented

CHAN_DOES_NOT_EXIST Channel does not exist

CHAN_NOT_IMPLEMENTED Channel type not implemented

FACILITY_NOT_IMPLEMENT Requested facility not implemented

FACILITY_NOT_SUBSCRIBED Facility not subscribed

FACILITY_REJECTED Facility rejected

GC_CALL_REJECTED Call was rejected

GC_CHANNEL_UNACCEPTABLE Channel is not acceptable

GC_DEST_OUT_OF_ORDER Destination is out of order

GC_NETWORK_CONGESTION Call dropped due to traffic volume

GC_NORMAL_CLEARING Call dropped under normal conditions

GC_REQ_CHANNEL_NOT_AVAIL Requested channel is not available

GC_UNASSIGNED_NUMBER Requested number is unknown

GC_USER_BUSY End user is busy

INCOMING_CALL_BARRED Incoming call barred

INCOMPATIBLE_DEST Incompatible destination

INTERWORKING_UNSPEC Interworking unspecified

186

INVALID_CALL_REF Invalid call reference

INVALID_ELEM_CONTENTS Invalid information element

INVALID_MSG_UNSPEC Invalid message, unspecified

INVALID_NUMBER_FORMAT Invalid number format

MANDATORY_IE_LEN_ERR Message received with mandatory information
element of incorrect length

MANDATORY_IE_MISSING Mandatory information element missing

NETWORK_OUT_OF_ORDER Network out of order

NO_CIRCUIT_AVAILABLE No circuit available

NO_ROUTE No route. Network has no route to the specified
transient network or to the destination

NO_USER_RESPONDING No user responding

NONEXISTENT_MSG Message type nonexistent or not implemented

NUMBER_CHANGED Number changed

OUTGOING_CALL_BARRED Outgoing call barred

PRE_EMPTED Call preempted

PROTOCOL_ERROR Protocol error, unspecified

RESP_TO_STAT_ENQ Response to status inquiry

SERVICE_NOT_AVAIL Service not available

TEMPORARY_FAILURE Temporary failure

TIMER_EXPIRY Recovery on timer expired

UNSPECIFIED_CAUSE Unspecified cause

WRONG_MESSAGE Message type invalid in call state or not implemented

WRONG_MSG_FOR_STATE Message type not compatible with call state

The full definition of all the various cause codes can be found in the ITU-T's Q.850 recommendation:

http://www.itu.int/rec/T-REC-Q.850/en

ITU-T's Q.931 (ISDN) rcommendation itself can be found at: a href="http://www.itu.int/rec/t-rec-

q.931-199805-i/en">http://www.itu.int/rec/T-REC-Q.931-199805-I/en

http://www.itu.int/rec/t-rec-q.850/en

187

Dashboards

Preconfigured VoiceGuide IVR and ACD dashboards can be accessed at these locations:

http://localhost:7140/dash/ivr.html

http://localhost:7140/status/port-grid.html

http://localhost:7140/dash/acd-agent-list.html

http://localhost:7140/dash/acd-agent-grid.html

http://localhost:7140/dash/acd-agent-list-2.html

"localhost" would need to be replaced with VoiceGuide system's IP address if dashboard is viewed

remotely.

The dashboards are user configurable and retrieve system data from VoiceGuide through

VoiceGuide's REST API.

Creation of new custom Dashboards is also supported. New dashboards can be added to the

system by creating a new dashboard defintion file file and placing it in

VoiceGuide's \system\web\dash\ subdirectory. The newly created dashboard can then be accessed

using:

http://localhost:7140/dash/my-new-dashboard.html

188

REST API

VoiceGuide's REST API can be used to retrieve current and historical data for IVR and ACD systems.

Generation of PDF reports is also supported through the REST API.

VoiceGuide's REST API can be accessed at this location:

http://localhost:7131/v1/

"localhost" is replaced with system's IP address if REST API is accessed remotely.

REST API for IVR data:

http://localhost:7131/v1/ivr/calls/[direction]/[range]/[bin]/[port]/[data_or_labels]

[direction] : in | out | all

[range] : today | yesterday | YYYYMMDD | YYMMDD | MMDD | last24hr | last1hr | last30min | 24hr |

1hr | 30min

[bin_size] : day | 24hr | 1hr | 30min

[port] : all | X

[data_or_labels] : count | labels | detail | pdf

Examples of use:

http://localhost:7131/v1/ivr/calls

http://localhost:7131/v1/ivr/calls/group/live

http://localhost:7131/v1/ivr/calls/group/historical

http://localhost:7131/v1/ivr/calls/in/24hr/1hr/all/count

http://localhost:7131/v1/ivr/calls/in/24hr/1hr/all/labels

http://localhost:7131/v1/ivr/calls/in/24hr/1hr/all/pdf

"localhost" would need to be replaced with Voiceguide system's IP address if dashboard is viewed

remotely.

REST API for ACD data:

http://localhost:7131/v1/acd/agent/[agent_id]/[range]

http://localhost:7131/v1/acd/queue/[queue_name]/[range]

[agent_id] : all | list | X

[range] : today | yesterday | YYYYMMDD | YYMMDD | MMDD

[queue_name] : all | list | X

Examples of use:

189

http://localhost:7131/v1/acd/agent/list

http://localhost:7131/v1/acd/queue/list

190

Line Status Monitor

VoiceGuide Line Status Monitor is a Windows application that shows real-time status of each port.

191

Automated Report Scheduling

VoiceGuide allows for automated scheduling of creation of PDF reports and forwarding of them to

specified email list.

Automated reporting is configured in Config.xml file, located in VoiceGuide's /conf/ subdirectory.

192

Introduction

VoiceGuide has a built in a fully-featured voicemail system, and can support an unlimited number of

voicemail boxes.

Voicemail Features:

Auto-attendant system allowing spelling of user's names and diverting to voicemail if

extension is not answered.

Each mailbox can have a personalized greeting message, which can be changed remotely.

Each mailbox can have a personalized name/description, which can be changed remotely.,

Voicemail messages can be retrieved remotely.

Messages can be forwarded to other voicemail boxes and/or broadcast groups automatically,

or as specified by listener of message.

Messages can be be forwarded to an email address automatically as an attached Wave file.

Messages can be be forwarded to another phone number automatically. The forwarding

telephone number can be changed remotely by the voicemail box owner.

Messages can be uploaded by FTP to selected FTP server.

Voicemail box owners can change their PIN number remotely.

Broadcast Groups, allowing the sending of broadcast messages to selected groups of people.

Message Lamp for the extension associated with the mailbox is turned ON when new

messages arrive and OFF when messages are listened to.

All Voicemail system details stored in XML format, allowing easy integration with other

systems.

Voicemail boxes have to first be created before they can be used. The Voicemail Manager tool is

used to create and manage the voicemail boxes.

The voicemail boxes and menus can be accessed from any module. Paths can be specified to go to:

1.A particular voicemail box,

2.Menu which will ask the caller to enter the Voicemail box for which they want to leave a

message,

3.Retrieve Menu where the caller will be asked their voicemail box number and voicemail PIN

before being able to retrieve messages.

4.Auto Attendant which allows callers to spell the name of the voicemail box owner, and will

then transfer the call to related extension (if defined), and if extension does not answer will

divert call to related voicemail box.

An example below shows how the paths can be defined:

193

You can indicate to which module in the script the caller is to return to after leaving the voicemail

system by appending Return [module title] after the path specification. The Return option will need

to be typed in by hand. eg:

Once the caller has finished recording and/or retrieving messages and presses '0' to exit from the

voicemail system, the script will then go to the module specified in the Return option. See here for

more information on the Return option.

194

Modifying the Voicemail System

The Voicemail system is written as a set of VoiceGuide scripts located in VoiceGuide's \system\vm\

directory. These scripts can be edited giving the user full control and freedom over any modifications

and extensions which may be required of the voicemail system.

Only the Enterprise (and Evaluation) versions of VoiceGuide use the modifiable scripted version of

the voicemail - ie: the .vgs scripts in the \system\vm\ directory.

The Standard and Professional versions of VoiceGuide use the non-modifiable version of the

voicemail system.

195

Voicemail System Manager

Using the Voicemail Manager you can browse through the voicemail boxes, and change any of their

settings:

create/remove voicemail boxes,

play/delete/record messages left in individual voicemail boxes,

play/delete/record the greeting messages for individual voicemail boxes.

edit the forwarding email address for new voicemail messages

edit the forwarding phone number for new voicemail messages

edit the pager telephone number

edit the message distribution lists.

To add a new voicemail box select the 'Add/Modify' tab, and fill out the mailbox details and

forwarding information.

196

Field Description

Number Voicemail box numbers (VMB IDs) can be up to 6 digits long, allowing up to 1,000,000

voicemail boxes on the system. In most applications 4 digit digit voicemail ID's are used,

allowing up to 10,000 mailboxes.

PIN Voicemail box access PIN number length is set to 4 digits. If no PIN is specified the caller will

be asked to specify the PIN the first time they log into the voicemail box.

Name Name of the voicemail box owner. This is the name which can be spelled by caller when using

the Auto Attendant's 'spell name' feature.

Ext Extension number associated with this voicemail box. This is the extension number to which

caller will be transferred when using the Auto Attendant's 'spell name' feature.

Comments Administrator's Comments.

Groups Voicemail groups to which this mailbox belongs to. Voicemail groups are used when sending

broadcast messages, and when browsing voicemail boxes' welcoming messages.

Forward tel Any new messages will be forwarded to the phone number specified.

VG Dialer option must be enabled to allow VoiceGuide to dial out and deliver any new

voicemail messages.

Email

If a forwarding Email address is specified, all recorded messages for this mailbox will be sent

by Email to the address specified. If the message needs to be sent to multiple email

addresses the individual addresses must be separated by semicolons "

Copy To What other Voicemail boxes any messages left in this voicemail box should be copied to. The
list can include individual voicemail boxes or Distribution Lists.

Pager tel The telephone number dialed to deliver a numeric pager message.

VG Dialer option must be enabled to allow VoiceGuide to dial out and deliver any

197

new voicemail messages.

Pager msg The message sent to the pager. VoiceGuide will pause for a couple of seconds after dialing

the telephone number and before dialing the message. If this pause is not long enough, extra

wait time can be specified by tying commas at the beginning of the message. The example in

the captured screen above has three commas.

The length of a pause generated by each comma differs from system to system and its best

to determine by trial and error the number of commas to use in order to have reliable pager

message delivery from your VoiceGuide system to your pager provider.

Also in the example above a Result Variable was used in the message. This shows how the

caller's ID or any other data entered by the caller in another part of the script can be sent as

part of a pager message.

Email

If a forwarding Email address is specified, all recorded messages for this mailbox will be sent

by Email to the address specified. If the message needs to be sent to multiple email

addresses the individual addresses must be separated by semicolons "

Run What program to run after a message has been left for this voicemail box. This can be used
to start 3rd party command line utilities to forward alerts to alphanumeric pagers, or to
mobile phones via SMS. Another possible use is for post-processing of recorded message or
forwarding of the recorded message through other means. (The filename of the just recorded
message can be accessed using the $RV[VoicemailMesasgeXXXX] Result Variable - it returns
the filename of the last recorded voicemail message in a particular voicemail box - which is
specified by replacing XXXX with the number of the voicemail box.)

Distribution Lists

Messages recorded in the voicemail system can be sent to individual voicemail boxes or Distribution

Lists. Distribution Lists are by default global and available for use to anyone. This screenshot shows

how the Distribution Lists are defined:

198

Voicemail configuration file

The voicemail information is stored in file VmBoxList.xmlin the Data subdirectory.

The Voicemailbox data is stored in an XML format, allowing easy viewing and

manipulation of this data by users own tools.

Any changes made to the Voicemail configuration file by the Voicemail Manager or by

any other program will also be loaded by VoiceGuide immediately after the new version

of the file is saved. This allows for outside programs to add and delete voicemail

boxes at will.

Email Forwarding

The Voicemail Manager allows you to define the standard template for the Subject and Body of the

emails sent with forwarded recorded messages.

The Email's Subject and Body can also be customized on a per voicemail box basis by creating these

test files in VG's \system\vm\ subdirectory:

\system\vm\EmailForwardTemplate_XXXX_subject.txt

199

\system\vm\EmailForwardTemplate_XXXX_body.txt

Where XXXX is to be replaced by the voicemail box number.

If the Voicemail-box specific files subject or body can be found then the following files will be used if

they exist:

\system\vm\EmailForwardTemplate_subject.txt

\system\vm\EmailForwardTemplate_body.txt

RV's can be used within these template files as well.

The voicemail scripts can also be modified to append information to the message body - please

examine the voicemail scripts to see how this is done.

Note

Voicemail Manager reads the contents of the VmBoxList.xmlfile on start, and saves all the

information on exit - overwriting the previous VmBoxList.xml. This means that any changes

made to VmBoxList.xmlby voicemail users managing their accounts (changing PINs

or Forwarding numbers) by any other programs while the Voicemail Manager is open will be

lost.

Hence it is recommended that Voicemail Manager only be used only at times when no

callers are performing administration functions on their Voicemail account.

The voicemail introduction messages are stored by default in VG's \data\VmWelc\

subdirectory.

The messages left in voicemail boxes are stored by default in VG's \data\VmSave\

subdirectory.

200

Voicemail Menus

This is a summary of what keys can be used in the various voicemail menus. A .PDF file

(VoicemailMenus.pdf) showing the menus in a graphical format is also supplied in VoiceGuide's

directory.

Greeting Message Menu

While listening to the greeting message the following keys can be used:

 Stop playing the greeting message, and start
recording a message

 Group browse to the previous voicemail box and play
it's greeting message

 Replay the greeting message for this voicemail box

 Group browse to the next voicemail box and play it's
greeting message

 Go to Voicemail Login Menu

 Exit the voicemail system

 Stop recording and play the menu which speaks the
options listed above

Leave Message Menu

This is a menu used when recording a message to be left as voicemail, or editing that recorded

message. To access this menu the keys or must be pressed after the message has been

recorded.

 Stop recording and play the recorded message

 Delete the recorded message and start recording
again

 Save the recorded message and play the greeting
message for this voicemail box again

 Delete the recorded message and group browse to
the previous voicemail box and play it's greeting
message

 Delete the recorded message and play the greeting
message for this voicemail box again

 Delete the recorded message and group browse to
the next voicemail box and play it's greeting message

 Save the recorded message and go to Voicemail
Login Menu

 Save the recorded message and exit the voicemail
system

 Stop recording and play the menu which speaks the
options listed above

Voicemail Login

When logging into the voicemail box, a prompt will be played asking for the voicemail ID, and then

for the PIN number to be entered. If the two have been entered correctly then the Voicemail Box

Main Menu will be played.

Voicemail Box Main Menu

After entering the voicemail box ID and PIN, the following keys can be used:

 Listen to new voicemail messages

201

 Listen to saved voicemail messages

 Administer the greeting message

 Change voicemail box PIN

 Change the forwarding telephone number

 Record a message and send it to other voicemail
boxes

 Administer voicemail box name

 Exit and go to Login Menu

 Exit the voicemail system

 Play the message counts

Retrieve Messages Menu

When listening to new or saved messages, the following keys can be used:

 Replay the current message

 Save the current message and play the next message

 Delete the current message and play the next
message

 Play the previous message.

 Replay the current message

 Play the next message.

 Play the date and time when the message was
recorded, and the Caller ID of who left the message.

 Exit and go to Login Menu

 Forward current message to other voicemail boxes

 Return to Voicemail Access Menu

Administer Greeting Message Menu

When recording voicemail box's greeting message the following keys can be used:

 Replay the current greeting message

 Delete the current greeting message and record a
new greeting message

 Save the current greeting message and return to
Voicemail Access Menu

 Delete the current greeting message and return to
Voicemail Access Menu

Administer Mailbox Name/Description Menu

When recording voicemail box's name/description the following keys can be used:

 Replay the current greeting name

 Delete the current name and record a new name

 Save the current name and return to Voicemail
Access Menu

 Delete the current name and return to Voicemail
Access Menu

Record Message Menu

When recording a message to be sent to other voicemail boxes or distribution lists.

 Stop recording and play the recorded message

 Delete the recorded message and start recording
again

 Save the recorded message and start entering the
recipients of the voicemail message. These can be
individual voicemail boxes or distribution lists. Please

202

see the "Select Message Recipients Menu" on how the
recipients of the message are specified.

 Delete the recorded message and return to the
Voicemail box Administration Menu

 Save the recorded message and exit the voicemail
system

 Stop recording and play the menu which speaks the
options listed above

Select Message Recipients Menu

This menu allows the caller to select further recipients of the message just recorded. Once in this

menu the caller must enter the voicemail group numbers or the voicemail box numbers.

After entering each group number or voicemail box number the caller must enter the "#" key. After

the last destination is entered the caller must press the "#" key twice, and they will be returned to

the Voicemail box Administration Menu.

Changing the keys used

The Voicemail system is written as a set of VoiceGuide scripts located in VoiceGuide's \system\vm\

directory. These scripts can be edited giving the user full control to make any modifications and

extensions which may be required. This includes changing of the keys used to access various

voicemail system commands and features.

Only the Enterprise (and Evaluation) versions of VoiceGuide use the modifiable scripted version of

the voicemail - ie: the .vgs scripts in the \system\vm\ directory.

The Standard and Professional versions of VoiceGuide use the non-modifiable version of the

voicemail system.

203

Message Lamps

VoiceGuide can instruct the PBX to turn on the telephone extension's 'message lamp' when a new

voicemail message has arrived, and to turn off the 'message lamp' once the message has been

heard.

In VoiceGuide Script Editor got to the Edit menu and select go PBX Command Strings option, then

click on the Message Lamps tab. The following should be displayed:

The top section is used to select when the signals to the PBX to turn the message lamps on/off

should be sent.

The "Dial Strings" section is used to define what are the DTMF signals which VoiceGuide needs to

send to the PBX to turn the message lamps on/off.

In the example shown in the above screenshot VoiceGuide has been configured to send DTMF

tones *4,Ext (where Ext is the Extension number) when the first new voicemail message arrives

and *5,Ext when the voicemail box owner has saved or deleted all of the 'New' voicemail

messages.

The sending of the DTMF tones is done by VoiceGuide picking up one of the lines and dialing the

DTMF tones specified. Eg. if in the above example the extension number was 1234 then to turn the

lamp ON VoiceGuide would pick up a line and dial *4,1234 (with the comma indicating a short pause)

. It is possible to limit on what lines VG is allowed to send these lamp on/off messages. The lines on

which the sending of message lamp messages is allowed can be specified by just typing in the Line

IDs separated by commas. If the line selection text box is left blank then any of the currently

204

available lines will be used.

The Message Lamp feature is only enabled in the 'Evaluation' and 'Enterprise+Dialer' versions of

VoiceGuide.

205

Loading Numbers to Call

The Dialer add-on enables VoiceGuide to dial out and play a message or run a VoiceGuide script

once the call has been answered. Outbound calls can be scheduled using any of these methods:

Dial List Loader program.

Send Phone Message module in a VoiceGuide script.

Using VoiceGuide WCF/COM interface function Dialer_OutDialQueAdd.

Saving list of numbers to be called in an 'Out Dial' file, which VoiceGuide reads in automatically.

Adding dial entries directly to the OutDialQue database.

When using Dialogic cards the system can detect whether a real person or an answering machine

has answered the call. Different messages or scripts can be specified in either case. When an

answering machine answers the call the message or script will start after the welcoming message

stops playing.

When using a voice modem to dial out a prompt message needs to be specified which will be played

in a loop until the person who answers the call presses key on their telephone keypad. This is

because a voice modem cannot detect when a call is answered. Only after the called person

presses the key on their telephone keypad will the message or script be played. If an answering

machine answers calls placed using voice modems it will end up recording the prompt message

being played in a loop.

Outbound Call Loader

Allows easy scheduling of calls.

206

Outgoing Call parameters set using the Dial List Loader:

Phone numbers

The telephone numbers to be dialed can be typed directly into this text box. The numbers should

be entered one per line.

A range of numbers can be specified by placing an "X" in the number location which covers the

desired range. eg: 5627XXX results in a thousand telephone numbers: 5627000 to 5627999 to be

called. Typing 56274XX would result in a hundred numbers being called: 5627400 to 5627499.

Prefix

The number to add to before each of the numbers provided in the ‘Phone numbers’ text box or in

the ‘list file’. This entry is used if a certain number has to be dialed to reach an outgoing line or if

using an override code when dialing.

Phone Numbers File

207

Allows to select the text file from which to import the list of numbers to call. The file should contain

each number on its own new line.

A range of numbers can be specified by placing an "X" in the number location which covers the

desired range. eg: by typing 5627XXX we indicate that a thousand telephone numbers: 5627000

to 5627999 should be called. Typing 56274XX would result in a hundred numbers being called:

5627400 to 5627499.

Live Person Answer

What VoiceGuide script will be started or what sound file will be played when the call is answered

by a real person. Specifying the starting module can be made using notation: Script Filename|

Module Title

Answering Machine Answer

When the call is answered by an answering machine VoiceGuide will play this message/script.

Answering machines can only be detected if a Dialogic card is used.

If an answering machine is detected VoiceGuide will wait until the answering machine's welcome

message finishes before starting the script/sound file specified here.

RETRY : call will be attempted again if an answering machine is encountered (up to the maximum

number of redials allowed).

IGNORE The script/file specified when the live person answers will be used.

DISABLE Detection of when the call has been answered is disabled.

Answering Machine detection relies on the Dialogic card listening to the first word spoken by the

caller, and determining based on what it heard whether that word sounded like it was spoken by a

live person answering the call, or whether that word sounded like it was spoken by an answering

machine. This means that VoiceGuide needs to wait until he Dialogic card hears the word being

spoken and then advises VoiceGuide of it's decision. This incurs a delay of about a second after the

first word is spoken before VoiceGuide is advised whether to play the "real person" or the

"answering machine" script.

If the call is made on T1/E1 ISDN lines (and usually VoIP) VoiceGuide is able to detect the exact time

at which the call has been answered. If the "Answering Machine" message option is not set then

VoiceGuide will commence playing of the "Live person answer" script immediately when then

handset is picked up.

Fax to Send

If a fax is specified then VoiceGuide will send the specified fax on this call. This can be a .PDF or a

.TIFF file. Note that when this field is specified VoiceGuide will start playing the Fax Calling Tone

immediately after the number is dialed and only a fax send will be attempted during the call.

208

Do Not Call List (DNC List)

File containing a list of telephone numbers which will never be called by VoiceGuide, even if they

were inadvertently specified in the "Phone numbers to be called" file or text box. The file must

contain each number on a separate line.

Result Variables

Result Variables can be supplied to be used by the scripts which are ran once outgoing call is

answered.

The format of this field is [RvName]{RvValue}. Multiple Result Variables can be specified by listing

as many name-value pairs as needed. eg: [rv1]{val1}[rv2]{val2}[rv3]{val3}

Call Options

The Options field can be used for other special settings. Eg. to specify the outgoing CallerID used

for the call. Including this setting: <CallerId>5551234</CallerId> would result in CallerId to be set

to 5551234 on outgoing calls (lines used must support the setting of outgoing CallerID). For

information on configuring ISDN lines to send out the CallerID Name as well please see: http://

voiceguide.com/forums/index.php?showtopic=6079

Result Files

In addtion to CDR Logs and Script Logs, outcome of all outgoing calls is saved in

VoiceGuide's \data\ subdirectory.

OutDial_Contacted_Human.txt

List of calls answered by a real person.

OutDial_Contacted_AM.txt

List of calls answered by an answering machine.

OutDial_Contacted_Fax.txt

List of calls answered by a fax machine person.

OutDial_Uncontactable_NoAnswer.txt

List of calls which were not answered and rung out awaiting answer.

OutDial_Uncontactable_Busy.txt

List of calls which were not answered as the busy tone was heard.

OutDial_Uncontactable_OnDontDialList.txt

List of calls which were not made as the telephone number was on the supplied "Do Not Call list".

http://voiceguide.com/forums/index.php?showtopic=6079
http://voiceguide.com/forums/index.php?showtopic=6079

209

OutDial_Uncontactable_NoDialer.txt

List of calls which were not dialed as the Dialer option is not enabled.

OutDial_SIT_Reorder.txt

List of calls for which the Special Information Tone (Reorder) was played by the phone company.

OutDial_SIT_NoCircuit.txt

List of calls for which the Special Information Tone (No Circuit) was played by the phone company.

OutDial_SIT_CustIrReg.txt

List of calls for which the Special Information Tone (CustIrReg) was played by the phone company.

OutDial_SIT_Unknown.txt

List of calls for which an unknown Special Information Tone was played by the phone company.

Out Dial file

An 'OutDial' file can also be used to add new telephone numbers to be dialed by VoiceGuide. When

the file is created, VoiceGuide will read in the file and delete it after reading it's contents.

‘OutDial’ file should be created in VoiceGuide's \data\ subdirectory.

The filename must begin with "OutDial" and have the ".xml" suffix.

Eg: OutDial_080521175323a.xml

Multiple 'OutDial' files can be created at the same time, and will be read in by

VoiceGuide within about a second of them being created.

When supplying outgoing call data to VoiceGuide using input files it is advisable to

first create the file under a different name, and after the file writing/copying is

completed then rename the file to the OutDial*.xml format. This would ensure that

VoiceGuide would not attempt to open the file while it's contents are still being

written to by another process. If creating multiple

Out Dial Input file

The syntax of the OutDial file as used by VoiceGuide v7 is:

<OutDialEntry>

 <PhoneNumber>sPhoneNumber</PhoneNumber>

 <PhoneNumberPrefix>sPhoneNumberPrefix</PhoneNumberPrefix>

 <ActivateTime>sCallTime</ActivateTime>

 <DayTimeStart>sDayTimeStart</DayTimeStart>

 <DayTimeStop>sDayTimeStop</DayTimeStop>

 <DaysCallAllowed>sDaysCallAllowed</DaysCallAllowed>

210

 <PortSelection>sPortSelection</PortSelection>

 <CampaignName>sCampaignName</CampaignName>

 <Priority>iPriority</Priority>

 <OnAnswerLive>sOnAnswerLive</OnAnswerLive>

 <OnAnswerMachine>sOnAnswerMachine</OnAnswerMachine>

 <OnAnswerFax>sOnAnswerFax</OnAnswerFax>

 <OnNotAnswered>sOnNotAnswered</OnNotAnswered>

 <OnRetriesExhausted>sOnRetriesExhausted</OnRetriesExhausted>

 <AnswerTimeout>iAnswerTimeout</AnswerTimeout>

 <RetriesLeft>iRetriesLeft</RetriesLeft>

 <RetriesDelay>iRetriesDelay</RetriesDelay>

 <RV>sRV</RV>

 <CallOptions>sCallOptions</CallOptions>

 <Escalation>

 sEscalation

 </Escalation>

</OutDialEntry>

Where:

Phone number to be dialed.

Prefix to the phone number to be dialed. Prepended to the phone number before dialing.

Time the call is to be made. Format is YYYY-MM-DD HH:NN:SS If this setting is blank or is omitted then

the call will commence immediately. Format may also be: Now+X where X is the number of minutes from

the current time that the call should be scheduled for.

Time of the day from which this number can be dialed. Format is: HHNN and the time is specified in 24-

hour format. eg: 0800 would mean: this number may be called after 8am. If this setting is blank or is

omitted then the call will be allowed to be made from midnight onwards.

Time of the day after which this number can no longer be dialed. Format is: HHNN and the time is

specified in 24-hour format.

eg: 2100 would mean: do not dial this number after 9pm. If this setting is blank or is omitted then the call

will be allowed to be made right up to midnight.

On which days of the week can this number be dialed. Format is : [Mo][Tu][We][Th][Fr]

[Sa][Su] eg: MoWe would mean: this number may only be called on Mondays and

Wednesdays. If this setting is blank or is omitted then the call will be allowed to be made on every day

of the week.

If the outbound call may only be made on particular phone lines then the ports to which those lines are

attached should be listed in this setting. The ports should be specified as a comma delimited list of

physical ports (eg: 1,2,3). If any of the lines are allowed to to be used then this setting should be left

blank.

eg: 3,4,5 would indicate that the outgoing call can only be made on third, fourth or fifth port.

User defined name campaign name associated with this call. Used to assist in segregating of outgoing

calls based on their porpoise or source etc.

At what priority level the calls should be made. A lower number indicates a higher priority. ie: 1 is the

highest priority, then 2 etc etc. Number of priority levels is unlimited.

VoiceGuide script or sound file which will be used when the call is answered by a real person The full path

to this script or sound file must be specified. Specifying the starting module can be made using notation:

Script Filename|Module Title

VoiceGuide script or sound file which will be used when the call is answered by an answering machine.

The full path to this sound file or script must be specified. If this setting is blank or is omitted then the

sOnAnswerLive setting will be used.

If the word none is specified, then no file will be played and the call will be hung up. The

211

call will still be considered as having been completed.

If the word retry is specified, then the no file will be played and the call will be hung

up, with the call not considered completed - further call attempts will be made.

Fax to send. This can be a .PDF or a .TIFF file. Note that when this field is specified VoiceGuide will start

playing the Fax Calling Tone immediately after the number is dialed. The OnAnswerLive and

OnAnswerMachine will be ignored as only a fax send will be attempted during the call.

VBScript or .EXE/.COM/.BAT/etc. to run when the outgoing call has not been answered.

VBScript or .EXE/.COM/.BAT/etc. to run when the outgoing call has not been answered and there are no

more retries left. This command is ran in addition to the OnNotAnswered command.

How many seconds VoiceGuide will wait for the call to be answered. If this setting is blank or is omitted

then the answer timeout will be set to 60 seconds.

How many times VoiceGuide will re-dial the phone number, before abandoning trying to contact this

number. If iRetriesLeft is set to 0 then only one call will be made. If this setting is blank

or is omitted then a value of 2 will be used. (ie: up to 3 call attempts in total)

How many minutes VoiceGuide will wait between successive attempts (if iCallRetries is set to 1 or

more). If this setting is blank or is omitted then a value of 5 will be used.

List of custom Result Variables which can be used by the VoiceGuide script above. The format of this field

is [RvName]{RvValue}. Multiple Result variables can be specified by listing as many name-value pairs as

needed. eg: [rv1]{val1}[rv2]{val2}[rv3]{val3}

Used for the specifying of custom call options. eg. CallerID to be sent.

Alternate numbers to be dialed if the call has not been answered. Once the number of retries calling

sPhoneNumber is exhausted, then then alternative escalation number will be dialed

immediately. Format is in <OutDialEntry>...</OutDialEntry> structure format - this

allows for multiple escalation numbers to be specified.

Example 1 : Simple message delivery to a single number

Use

s :

 A ny s imple message / sc ript delivery.

Scenario: Call a telephone number 5553423, and run script d:\scripts\alarm.vgs when call is

answered. Call is to be made immediately. The OutDial file should contain:

<OutDialEntry>

 <PhoneNumber>5553423</PhoneNumber>

 <OnAnswerLive>d:\scripts\alarm.vgs</OnAnswerLive>

</OutDialEntry>

If the call is not answered then the number will be called up to two more times at

5 minute intervals.

Example 2 : Scheduling a call for a particular time.

Uses

:

 Wake up calls.
 Appointment reminder service.
 Any announcements which need to be sent out at a particular time.

Scenario: Call the telephone number 5553328 at 6:30 in the morning on a 12th June 2008 and run the script d:
\scripts\todays_specials.vgs - passing to the script Result Variables which that script uses (in this case it will be
pricing of the items on special for this customer). If an Answering Machine answers then run a modified version of the
script which just plays the prices and leaves contact details (d:\scripts\todays_specials_AM.vgs). The OutDial file should
contain:

<OutDialEntry>

 <PhoneNumber>5553328</PhoneNumber>

212

 <ActivateTime>2008-06-12 06:30:00</ActivateTime>

 <OnAnswerLive>d:\scripts\todays_specials.vgs</OnAnswerLive>

 <OnAnswerMachine>d:\scripts\todays_specials_AM.vgs</OnAnswerMachine>

 <RV>[ClientID]{123456}[PriceWidget]{125}[PriceDelivery]{7.50}</RV>

</OutDialEntry>

Example 3 : Ensuring call is made during particular days/hours.

Uses

:

 Surveys.

 Distributing information to a large client base.

 Whenever making a large number of calls and need to ensure that calls are only made between the hours

allowed

Scenario: Call the telephone number 5553328 at between 10am and 6pm on any weekday, and run script d:

\scripts\paymentoverdue.vgs - passing to the script Result Variables which that script uses (in this case the customer ID

and the amount owing). If an Answering Machine answers then run a modified version of the script which just plays the

amount owing and leaves contact details (d:\scripts\paymentoverdue_AM.vgs). The OutDial file should contain:

<OutDialEntry>

 <PhoneNumber>5553328</PhoneNumber>

 <DayTimeStart>1000</DayTimeStart>

 <DayTimeStop>1800</DayTimeStop>

 <DaysCallAllowed>MoTuWeThFr</DaysCallAllowed>

 <OnAnswerLive>d:\scripts\paymentoverdue.vgs</OnAnswerLive>

 <OnAnswerMachine>d:\scripts\paymentoverdue_AM.vgs</OnAnswerMachine>

 <RV>[ClientID]{4453566}[AmountOwing]{14325}</RV>

</OutDialEntry>

Specifying the days on which calls can be made and the time range during

which the call can be made is useful if a large number of calls are

queued and there is a need to ensure that the system will not make the

calls on odd days or hours.

When specifying a large number of calls it is usually easier to use the

Telephone Number Loader program, rather then specifying all the numbers using the Out Dial file.

Example 4 : Escalated calls

Uses : Delivering information to on-call staff, with supervisor escalation if calls by main staff not answered.

 Follow-me message delivery - where a number of possible contact numbers is given.

 Whenever a message needs to be delivered to one of a range of telephone numbers.

Scenario 1: Call the number 5551111 immediately and run the script d:\scripts\alert.vgs - passing to the script Result Variables which that script uses (in this case it will be information on a problem
reported by customer). If the number does not answer then wait 5 minutes and try calling it again. If after 3rd call attempt the number still does not answer then try calling 5552222 - again calling up to
3 times at 5 minute intervals. If an answering machine answers the call then start the d:\scripts\alert.vgs script as well (script should be designed to just play the information to caller). If on 3rd
call attempt the second number still does not answer then run a VB Script d:\scripts\notanswered.vbs. The OutDial file should contain:

<OutDialEntry>

 <PhoneNumber>5551111</PhoneNumber>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <RetriesLeft>2</RetriesLeft>

 <RetriesDelay>5</RetriesDelay>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]{5559743}</RV>

 <Escalation>

 <OutDialEntry>

213

 <PhoneNumber>5552222</PhoneNumber>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <RetriesLeft>2</RetriesLeft>

 <RetriesDelay>5</RetriesDelay>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]{5559743}</RV>

 <OnRetriesExhausted>d:\scripts\notanswered.vbs</OnRetriesExhausted>

 </OutDialEntry>

 </Escalation>

</OutDialEntry>

Scenario 2: Message delivery to a Line Person only : Call the number

5551111 immediately and run the script d:\scripts\alert.vgs - passing to

the script Result Variables which that script uses (in this case it will

be information on a problem reported by customer). If the number cannot

be reached or if an answering machine answers the call then immediately

call another number instead (5552222) and if that number is not answered

by a live person then call a third number (5553333). If a live person

could not be reached on any of these numbers then wait 10 minutes and try

calling all 3 numbers again. If after the second call attempt to all 3

numbers no live person could be reached then run a VB Script d:

\scripts\notanswered.vbs In this scenario it is acceptable to deliver the

message to a Line Person only, calls answered by Answering Machines will

not be regarded as successful message delivery calls and no message will

be left on the answering machine. The OutDial file should contain:

<OutDialEntry>

 <PhoneNumber>5551111</PhoneNumber>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <OnAnswerMachine>retry</OnAnswerMachine>

214

 <RetriesLeft>0</RetriesLeft>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]{5559743}</RV>

 <Escalation>

 <OutDialEntry>

 <PhoneNumber>5552222</PhoneNumber>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <OnAnswerMachine>retry</OnAnswerMachine>

 <RetriesLeft>0</RetriesLeft>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]{5559743}</RV>

 <Escalation>

 <OutDialEntry>

 <PhoneNumber>5553333</PhoneNumber>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <OnAnswerMachine>retry</OnAnswerMachine>

 <RetriesLeft>0</RetriesLeft>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]{5559743}</RV>

 <Escalation>

 <OutDialEntry>

 <PhoneNumber>5551111</PhoneNumber>

 <CallTime>Now+10</CallTime>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <OnAnswerMachine>retry</OnAnswerMachine>

 <RetriesLeft>0</RetriesLeft>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]{5559743}</RV>

 <Escalation>

 <OutDialEntry>

 <PhoneNumber>5552222</PhoneNumber>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <OnAnswerMachine>retry</OnAnswerMachine>

 <RetriesLeft>0</RetriesLeft>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]{5559743}</

RV>

 <Escalation>

 <OutDialEntry>

 <PhoneNumber>5553333</PhoneNumber>

 <OnAnswerLive>d:\scripts\alert.vgs</OnAnswerLive>

 <OnAnswerMachine>retry</OnAnswerMachine>

 <RetriesLeft>0</RetriesLeft>

 <RV>[ClientID]{554}[Severity]{2}[ContactTel]

{5559743}</RV>

 <OnRetriesExhausted>d:\scripts\notanswered.vbs</

OnRetriesExhausted>

 </OutDialEntry>

215

 </Escalation>

 </OutDialEntry>

 </Escalation>

 </OutDialEntry>

 </Escalation>

 </OutDialEntry>

 </Escalation>

 </OutDialEntry>

 </Escalation>

</OutDialEntry>

The above script will result in the numbers being called in the following

order : 5551111, then if no answer dial 5552222, and if no answer then

dial 5553333, then wait for 10 minutes, and repeat calling 5551111 then

5552222 then 5553333. Dialing of furhter numbwers would stop as soon as

one of the calls is answered.

Please note that the above script will only work if Dialogic cards are

used - detection of whether a Human or an Answering Machine answers the

call can only be made by a Dialogic card - Voice modems report all

outgoing calls as 'Connected to a Human' immediately after dialing the

number.

216

Detect Call Answer

How VoiceGuide will detect that an outgoing call has been answered depends on what telephone

lines/trunks are used.

Analog

Dialogic cards can detect when a call has been answered and can fairly reliably distinguish if a call

has been answered by a live person or by an answering machine. As soon as the recipient of call

starts saying something the Dialogic card can tell whether the call has been answered by a human

or by a machine. VoiceGuide will then run the appropriate script.

If answering machine detection is disabled then the Dialogic card will just wait for any spoken

sounds (live or machine), and once it hears anything (or ringback has gone away) then it will report

call as connected. The ringback tone for which the Dialogic card is to listen out for needs to be

correctly specified. The default value will work for most ringbacks, but sometimes it will be

necessary to set the ringback tone definition in ConfigLine.xml file (if using VG for Dialogic). The

TID_RNGB1 tone definition needs to be used. There is another ringback tone definition available -

TID_RNGB2 - but we have found that many cards will not detect the ringback defined in TID_RNGB2

correctly.

If recipient of call does not say anything after answering the call (or there is just silence on the line)

then the Dialogic card will deduce that the call has been answered only when it realizes that the

'ringback' signal has gone away.

If the Dialogic card does not correctly detect the ringback tone on the line, then after a timeout

(about 8 seconds) it will report the outgoing call as connected even though the outgoing line is still

ringing.

T1 and E1 ISDN

On ISDN connections the Dialogic card receives an indication from Telco the instant the call recipient

picks up the handset.

If answering machine detection is disabled then then the digital card will report the call as

connected immediately when the recipient of the call picks up their handset, and the script will be

started.

If answering machine detection is enabled then, just like Dialogic Analog cards, the Dialogic Digital

cards will be able to determine whether the call has been answered by a human or by a machine as

soon as the recipient of call starts saying something. VoiceGuide will then run the appropriate

script.

If answering machine detection is enabled and recipient of call does not say anything after

answering the call then the Dialogic card will timeout out after a few seconds of receiving the

'handset is offhook' signal and report the call as connected.

217

Similarly, an indication that the destination telephone is busy or disconnected is sent back to the

digital card from the network immediately - allowing for quick abandoning of those calls and dialing

of another number if needed.

VoIP (SIP)

On VoIP connections VoiceGuide receives an indication whe the call recipient picks up the handset.

Answering machine detection is made once spoken sounds are heard.

The sound quality of VoIP connections is sometimes not as good as when Analog or Digital trunks

are used, and hence the precision with which answering machines vs. live persons are detected is

sometimes worse then on Analog or Digital systems.

Detecting Answering Machines

Dialogic cards ands SIP drivers can detect if a call has been answered by an answering machine or

by a human. No other telephony drivers can do that and that is why Dialogic drivers are the best

choice for systems which use outbound dialing.

VoiceGuide uses Dialogic's answering machine detection mechanism to distinguish whether a

person or an answering machine has answered the call. Dialogic's answering machine detection

uses frequency based analysis and detection of whether the speech is coming from live person or

answering machine is made in less then a second. If Dialogic informs VoiceGuide that it has

detected an answering machine then VoiceGuide will wait for the speaking on the line to finish

before playing the answering machine message or starting the script.

Answering Machine detection is enabled by default. The following keywords can be used in the

"Answering Machine" text field to modify this behaviour:

RETRY : VoiceGuide will hang up and dial again (up to the maximum number of redials allowed).

IGNORE : VoiceGuide will start the "Live Person Answer" script.

DISABLE VoiceGuide will disable Dialogic's detection of when the call has been answered.

If Answering Machine was detected, the $RV[AmWelcMsg]) will store the legth of the Answering

Machine message (in 100ms units).

False reports of an Answer Machine answer when a Live Peron actually answered the call:

On poor quality lines (usually low quality VoIP and mobile phone connections) the Dialogic card will

sometimes mistakenly think an answering machine has answered the call when in fact the call was

answered by a real person. The reason for this is that the low quality of the connection makes the

voice of the person answering the call sound very similar to the sound quality usually expected from

an answering machine.

218

Background noise can also play a factor in false detection of answering machines (eg: radio playing

in background, machine noise, etc)

False reports of a Live Person answer when an Answer Machine actually answered the call:

If the answering machines/voicemails welcoming message is recorded in high quality then it is

possible for the Dialogic card to mistake it for a real person answering the call. The normal every-

day analog based answering machines are usually correctly detected by Dialogic.

One approach to work around this would be to first play in the "Live Answer" script a short

message that says "Please wait" and then start recording. Set silence length to be short

beforehand - say about half a second. In the record module use a "on {silence} goto... " path and

point to start of the actual start of the script. When the recording finishes due to silence and the

actual script starts then the first message played will be recorded on the answering machine, or

heard by the caller. This approach effectively uses the record module will wait till answering

machine finishes playing, but will result in a slightly delay in playing of the first message to live

people. Some people do not place a Play module before this record module, so the live caller would

just experience a half second delay before the main script is started.

Fine tuning Dialogic Answer Detection Parameters

With VoiceGuide confiuration files it is possible to set all entries in the Dialogic DX_CAP structure,

which includes Dialogic's low level settings that affect the Answering Machine / Live Answer

detection parameters:

ca_cnosig

ca_noanswer

ca_pamd_failtime

etc.

There are about 30-40 settings in the DX_CAP structure, all of which are accessible, allowing total

control (on a per-call basis) over how the Dialogic card performs the detection.

For more information on the fields in the DX_CAP structure please refer to Dialogic's documentation

- the "Voice API" section.

To change settings from the default values used by VoiceGuide an XML style expression needs to

be specified in the "Call Options" field. Example of the expression used is show below:

<DX_CAP><ca_cnosig>500</ca_cnosig><ca_pamd_failtime>200</ca_pamd_failtime></DX_CAP>

219

Outbound VoIP calls

When placing an outgoing call the IP address or domain of the destination or Switch/PBX or VoIP

Provider relaying the call needs to be specified.

For example, when dialing another extension on the VoIP Switch/PBX the number dialed would be

of the format: extension@ip_address_of_voip_switch

eg:

2043@10.1.1.11

According to how the VoIP switch is set up, the "extension" could also be an external phone

number.

when dialing another number through a VoIP provider, the VoIP providers SIP server domain/

address needs to be specified: telnumber@sipprovider

eg:

15551231234@callcentric.com

When making an outgoing call on a VoIP line it is usually necessary to specify the CallerID to be

used on the outgoing call. This advises the switch relaying the VoIP call as to which account/

subscriber is making the call. The CallerID on outgoing calls can be specified using the <CallerID>

tag on the Options field when loading the outgoing call, and is in this format:

<CallerID>accountnumber@voipprovider</CallerID>

For example, to place a call through a FreeSWITCH PBX which is installed on a server with IP of

10.1.1.11, and with which the user/extension 1010 has been registered by VoiceGuide, the

following entry would need to be placed in the Options field:

<CallerID>1010@10.1.1.11</CallerID>

Sometimes just user ID (or the registered telephone number) is sufficient, eg:

<CallerID>5625551234</CallerID>

And to place a call through a VoIP provider with which the account was registered by VoiceGuide,

an entry that includes the domain name of the provider may need to be used. For example, with

CallCentric, this may need to be used:

<CallerID>12345678@callcentric.com</CallerID>

Also, on outbound calls the VoIP Switch will often require to authenticate the user before allowing

220

the outbound call to be made. To allow HMP to process the authentication request it is necessary to

specify the VoIP Line registration and authentication parameters. Please see the VoIP Line

Registraton section.

If specific headers need to be added/modified in the outgoing SIP INVITE packet then these can

also be specified in the Call Options field when loading the outgoing call. To add a SIP header a

"<sip-header>" entry needs to be specified in the Call Options field.

eg: to add a "Remote-Part-ID" header, this entry could be added to the Call Options field:

<sip-header>Remote-Part-ID: "Flowroute" <sip:1234567890@sip.flowroute.com>

"sip-session-expires" and "sip-min-se" entries can also be specified, like this:

<sip-session-expires>999</sip-session-expires>

<sip-min-se>55</sip-min-se>

(or these could be just added using the "<sip-header>" approach)

Multiple headers can be specified. Below is a valid Call Options entry:

<CallerID>12121212</CallerID>

<sip-session-expires>999</sip-session-expires>

<sip-min-se>55</sip-min-se>

<sip-header>Remote-Part-ID: "Flowroute" <sip:123412341234@sip.flowroute.com;

party=calling;screen=yes;privacy=on</sip-header>

<sip-header>X-Tag: mySpecialCallTag123</sip-header>

<sip-header>Diversion: <sip:333344445555@sip.mycarrier.com>

The WireShark protocol analyzer can be used to capture the traces of the actual SIP

messages sent.

221

Predictive Dialers

Predictive Dialers are automated dialing systems designed to reach contacts and connect them to

agents upon call answer.

VoiceGuide can be used to create all the various types of Predictive Dialing systems, by modifying

the scripts used by the VoiceGuide dialer on outgoing calls. A VoiceGuide based system can blend

inbound, outbound, and voice messaging campaigns as well as run multiple simultaneous

campaigns.

Predictive Outbound IVR

The rate at which the Outbound IVR calls are made is dependant on how many agents are

predicted to be available at the time when call recipients may request transfer to agent.

Click to Callback

Web page can include a "Call me" button to immediately initiate an outbound call from VoiceGuide,

and once call answered and call recipient is verified VoiceGuide can connect the call to agent.

Predictive Dialer

Rate of calls is determined by number of agents predicted to be available when calls are predicted

to be answered. If no agents are immediately available to connect to answered call then

VoiceGuide can take contact through a personalized IVR script until an agent becomes available.

Power Dialer

Start multiple simultaneous calls per employee at the moment agents are ready. If more calls are

answered then expected then VoiceGuide can take contact through an IVR script personalized with

customer related information until an agent becomes available.

Progressive / Automated / Preview Dialer

At the moment agents are ready, a single record is displayed for employee review prior to

connection and that single number is automatically called. This approach only eliminates the need

for agent to manually enter the number to be called, but ensures that an agent will always be

ready to speak to the the person answering the call.

222

External Database Source (v7)

VoiceGuide makes use of a database to store detatils of queued outgoing calls, CDRs, reportable

statistics, etc.

VoiceGuide ill by default use an SQLite database, which is sufficient for most applications.

The SQLite database file is called vgDb.db and is located in VoiceGuide's \data\ subdirectory.

Sometimes it is desirable that VoiceGuide uses a differnet databse engine instead.

To use another database engine:

1.Create the main Database object to be used by VoiceGuide.

2.Specify the connection string in VoiceGuide's Config.xml, in section <Dialer>

VoiceGuide will create all the necessary Tables/Indexes/etc the first time it uses the user specified

database.

The <Dialer> section should be placed inside the Config.xml's <VoiceGuideConfig> section.

MS SQL Server

Example Config.xml <Dialer> section for MS SQL Server:

<Dialer>

<OutDialQue_ADODB_Provider>System.Data.SqlClient</OutDialQue_ADODB_Provider>

<OutDialQue_Database>vgDb</OutDialQue_Database>

<OutDialQue_ConnectString>Data Source=10.1.1.11,1402;Database=$DATABASE;User ID=someuser;

Password=somepassword;</OutDialQue_ConnectString>

<OutDialQue_PortToUse_LinkField></OutDialQue_PortToUse_LinkField>

<OutDialQue_SqlPrefix></OutDialQue_SqlPrefix>

<OutDialQue_SqlSuffix></OutDialQue_SqlSuffix>

</Dialer>

After setting the Config.xml to appropriate values you will need to create the database (schema)

object named vgDb (or whatever the name specified in the <OutDialQue_Database> section is). Use

the Microsoft SQL Server Management Studio to create the database object.

Configuring MS SQL Server

If the SQL Server is on a system separate to VoiceGuide then it needs to be configured to allow

external connections. Also the system's firewall needs to be set to pass though the external

connection requests to the database.

MySQL

223

When using MySQL as the VoiceGuide backend DB you should first install the MySQL ADO.NET Data

Provider.

Here is an example Config.xml <Dialer> section for MySQL:

<Dialer>

<OutDialQue_ADODB_Provider>MySql.Data.MySqlClient</OutDialQue_ADODB_Provider>

<OutDialQue_Database>vgDb</OutDialQue_Database>

<OutDialQue_ConnectString>Database="$DATABASE";Data Source="10.1.1.9";User Id="someuser";

Password="somepassword";</OutDialQue_ConnectString>

<OutDialQue_PortToUse_LinkField></OutDialQue_PortToUse_LinkField>

<OutDialQue_SqlPrefix>SELECT</OutDialQue_SqlPrefix>

<OutDialQue_SqlSuffix>LIMIT 1</OutDialQue_SqlSuffix>

</Dialer>

After setting the Config.xml to appropriate values you will need to create the database (schema)

object named vgDb (or whatever the name specified in the <OutDialQue_Database> section is). You

can use the MySQL Workbench to create the database schema object. You must ensure that the

user specified in the Connection string has the rights to fully work with and manage the vgDb

schema.

Best way to configure and test the ADO.NET connection is to just start the VoiceGuide "Outbound

Call Loader" application. On startup the Outbound Call Loader will connect to the database object

and run the Db_Create_MySql.Data.MySqlClient.sql script creating the Tables and Indexes. You

can then use the Outbound Call Loader to load new calls into the system, or try loading the calls

into the database yourself directly.

The<OutDialQue_SqlPrefix> and <OutDialQue_SqlSuffix> values are used when VoiceGuide

constructs the SQL query to find the suitable call in the PortToUse table.

Oracle

When using Oracle as the VoiceGuide backend DB you should install Oracle's ADO.NET Data Provider

(Oracle.DataAccess.Client).

Here is an example Config.xml <Dialer> section for Oracle:

<Dialer>

<OutDialQue_ADODB_Provider>Oracle.DataAccess.Client</OutDialQue_ADODB_Provider>

<OutDialQue_Database>vgDb</OutDialQue_Database>

<OutDialQue_ConnectString>Data Source=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=10.1.1.26)

(PORT=1521))(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=$DATABASE)));User Id=HR;

Password=hr;</OutDialQue_ConnectString>

<OutDialQue_PortToUse_LinkField>Disable</OutDialQue_PortToUse_LinkField>

<OutDialQue_SqlPrefix>SELECT</OutDialQue_SqlPrefix>

<OutDialQue_SqlSuffix></OutDialQue_SqlSuffix>

</Dialer>

224

At this stage we would recommend disabling the PortToUse table if Oracle is used.

Postgres 9.2.x

Here is an example Config.xml <Dialer> section for Postgres 9.2.x (and later):

<Dialer>

<OutDialQue_ADODB_Provider>Npgsql</OutDialQue_ADODB_Provider>

<OutDialQue_Database>vgDb</OutDialQue_Database>

<OutDialQue_ConnectString>Server=10.1.1.36;User Id=postgres;Password=postgres;

Database=vgDb;</OutDialQue_ConnectString>

<OutDialQue_PortToUse_LinkField></OutDialQue_PortToUse_LinkField>

<OutDialQue_SqlPrefix>SELECT</OutDialQue_SqlPrefix>

<OutDialQue_SqlSuffix>LIMIT 1</OutDialQue_SqlSuffix>

</Dialer>

For a Postgress installation on the same machine the IP address 127.0.0.1 should be used:

<Dialer>

<OutDialQue_ADODB_Provider>Npgsql</OutDialQue_ADODB_Provider>

<OutDialQue_Database>vgDb</OutDialQue_Database>

<OutDialQue_ConnectString>Server=127.0.0.1;Port=5432;User Id=postgres;Password=postgres;

Database=vgDb;</OutDialQue_ConnectString>

<OutDialQue_PortToUse_LinkField></OutDialQue_PortToUse_LinkField>

<OutDialQue_SqlPrefix>SELECT</OutDialQue_SqlPrefix>

<OutDialQue_SqlSuffix>LIMIT 1</OutDialQue_SqlSuffix>

</Dialer>

If Postgres is installed on another server you will need to configure Postgres to allow remote

access. This is done by editing Postgres pg_hba.conf configuration file.

Best way to configure and test the ADO.NET connection is to just start the VoiceGuide "Outbound

Call Loader" application. On startup the Outbound Call Loader will connect to the database object

and run the Db_Create_Npgsql.sql script creating the Tables and Indexes. You can then use the

Outbound Call Loader to load new calls into the system, or try loading the calls into the database

yourself directly.

SQLite

For completeness, here is an example Config.xml <Dialer> section which is used by default to

connect to an SQLite database:

<Dialer>

<OutDialQue_ADODB_Provider>System.Data.SQLite</OutDialQue_ADODB_Provider>

<OutDialQue_Database>C:\Program Files\VoiceGuide\data\vgDb.db</OutDialQue_Database>

225

<OutDialQue_ConnectString>Data Source=$DATABASE</OutDialQue_ConnectString>

<OutDialQue_PortToUse_LinkField></OutDialQue_PortToUse_LinkField>

<OutDialQue_SqlPrefix>SELECT</OutDialQue_SqlPrefix>

<OutDialQue_SqlSuffix>LIMIT 1</OutDialQue_SqlSuffix>

</Dialer>

Call Prioritization

Priority ordering is specified by using the ORDER BY clause when selecting calls from the database.

This clause is specified in the OutDialQue_SqlSuffix setting in the <Dialer> section of the

Config.xml file:

<OutDialQue_SqlSuffix>ORDER BY Priority ASC</OutDialQue_SqlSuffix>

If you have a large number of calls loaded then ordering the retrieved calls by Priority can degrade

call data retrieval speed. If you are seeing excessive call retrieval times from the database then

removing this clause would speed up call retrieval.

If priority is being enabled and a large number of calls are being loaded then we'd recommend

using a sever class database like SQL Server or MySql etc.

Loading Calls Directly

This section outlines how calls need to be loaded into the Dialer Database if you would like your

own programs to load the calls instead of using the VoiceGuide Telephone Number Loader or the

VoiceGuide WCF/COM function or XML file to load the calls.

The outbound calls database uses two tables: CallQue and PortToUse

Addition of new calls into the system involves placing new entries in both tables, with possible

multiple entries in the PortToUse table, depending on what port selections need to be specified.

The PortToUse table is used to indicate on which ports the particular call can be made. If a call is

allowed to be made on any of the systems ports then a single entry in the PortToUse table needs

to be made, with the PortToUse. PortNumber field assigned a value of -1. Otherwise if call can only

be made on some of the ports then a new row needs to placed in PortToUse for each port on which

the outgoing call is allowed to be made. The telephony ports on the VoiceGuide system are

numbered from 1.

By default the PortToUse table is used when establishing which call is to be made next. Scheduling

information is still included in the CallQue table as there is an option of turning off the PortToUse

table use altogether if there is no need to limit the ports on which the calls can be made.

It's recommended to use the Outbound Call Loader application to load some calls into the database

and then examine the database tables to how the information is placed in the tables.

The SQL statements used can be seen in the vgDialListLoad trace files (see VG's \log\ subdirectory),

and it's recommend that these traces be looked at by anybody wanting to see how the Dial List

226

Loader is actually performing the inserts.

Here are the two main SQL statements used (with parameter placeholders):

INSERT INTO CallQue (GUID, PhoneNumber, PhoneNumberPrefix, ActivateTime, Priority,

TimeStart_Mon, TimeStart_Tue, TimeStart_Wed, TimeStart_Thu, TimeStart_Fri, TimeStart_Sat,

TimeStart_Sun, TimeStop_Mon, TimeStop_Tue, TimeStop_Wed, TimeStop_Thu, TimeStop_Fri,

TimeStop_Sat, TimeStop_Sun, CampaignName, OnAnswerLive, OnAnswerMachine, OnAnswerFax,

OnNotAnswered, OnRetriesExhausted, AnswerTimeout, RetriesLeft, RetriesDelay, RV,

CallOptions, EscalationCalls)

OUTPUT Inserted.ID VALUES (@guid, @strNbrToDial, @strPhoneNumberPrefix, @dateActivateTime,

@iPriority, @iTimeStart_Mon, @iTimeStart_Tue, @iTimeStart_Wed, @iTimeStart_Thu,

@iTimeStart_Fri, @iTimeStart_Sat, @iTimeStart_Sun, @iTimeStop_Mon, @iTimeStop_Tue,

@iTimeStop_Wed, @iTimeStop_Thu, @iTimeStop_Fri, @iTimeStop_Sat, @iTimeStop_Sun,

@strCampaignName, @strOnAnswerLive, @strOnAnswerMachine, @strOnAnswerFax,

@strOnNotAnswered, @strOnRetriesExhausted, @iAnswerTimeout, @iRetriesLeft, @iRetriesDelay,

@strRV, @strOptions, @strEscalationCalls);

INSERT INTO PortToUse (CallID, CallGUID, PortNumber, ActivateTime, Priority,

TimeStart_Mon, TimeStart_Tue, TimeStart_Wed, TimeStart_Thu, TimeStart_Fri, TimeStart_Sat,

TimeStart_Sun, TimeStop_Mon, TimeStop_Tue, TimeStop_Wed, TimeStop_Thu, TimeStop_Fri,

TimeStop_Sat, TimeStop_Sun)

VALUES (@iCallID, @guid, @iPortNumber, @dateActivateTime, @iPriority, @iTimeStart_Mon,

@iTimeStart_Tue, @iTimeStart_Wed, @iTimeStart_Thu, @iTimeStart_Fri, @iTimeStart_Sat,

@iTimeStart_Sun, @iTimeStop_Mon, @iTimeStop_Tue, @iTimeStop_Wed, @iTimeStop_Thu,

@iTimeStop_Fri, @iTimeStop_Sat, @iTimeStop_Sun);

All the call details are first inserted into the CallQue table, and then a subset of call information is

inserted into the PortToUse table. After inserting a row into the CallQue table the value of the

autogenerated ID field needs to be retrieved and the value of that ID field is used in the CallID field

when inserting related rows into the PortToUse table. This can be done differently depending on

what database is used.

In the INSERT INTO CallQue example above the ID retrieval is done using the SQL command OUTPUT

Inserted.ID

The ID retrieval can also be be done on some databases using this SQL command:<

SELECT DISTINCT @@identity FROM CallQue

The above command can be issued at the same time as the Insert command, like this:

INSERT INTO CallQue (...) VALUES (...); SELECT DISTINCT @@identity FROM CallQue

An alternative approach instead of placing the CallQue.ID in the PortToUse.CallID column would be

to use a GUID to link the PortToUse entries to the CallQue entry. Just generate a GUID and write

the same GUID into the PortToUse.CallGUID column and into the CallQue.GUID column. A value of -

1 can then be placed in the PortToUse.CallID column.

227

Other Notes

<OutDialQue_PortToUse_LinkField> options are:

ID
The ID value is used to link the entries in the CallQue and PortToUse tables. GUID field is
not included in SELECT queries, which means that the CallQue and PortToUse tables do not
even need to have the GUID column.

GUID
The GUID value is used to link the entries in the CallQue and PortToUse tables. The GUID
would need to be created before insertion into CallQue and PortToUse tables.

Disable

Do not use PortToUse table at all. If PortToUse table is not used then VoiceGuide will make
outbound calls on any available ports. Also when this setting is used the GUID field is not
included in SELECT queries to the CallQue table, which means that the CallQue table does
not even need to have the GUID column.

not set If this field is empty or not included at all then VoiceGuide will default to the GUID setting

The <OutDialQue_SqlPrefix> and <OutDialQue_SqlSuffix> values are used when VoiceGuide

constructs the SQL query to find the suitable call in the PortToUse table.

The default value used if <OutDialQue_SqlPrefix> is blank is: SELECT TOP 1

The actual SQL scripts used by VoiceGuide to automatically create the database tables

used by it can be found in VoiceGuide's \system\setup\ subdirectory. The default

scripts used is named Db_Create.sql

ADO.NET Provider Specific versions of this script can be created. To make a Provider-

specific script file the Provider name needs to be specified as part of the filename:

Db_Create_ProviderName.sql

eg:

Db_Create_System.Data.SqlClient.sql

228

SugarCRM

VoiceGuide IVR can integrate with most CRM systems.

Integration is straightforward for CRMS that offer a REST interface.

Below example shows how VoiceGuide can perform OAuth2 authenticateion with SugarCRM, and

then call the various functions in the SugarCRM REST API.

Version number of SugarCRM REST API that was tested was: v10

OAuth2 Authorisation

Voiceguide script would use a Web Service module to issue a POST requires to the /oauth2/token

REST API function, and provide the required data in JSON format.

The https address to POST to would be something like this:

https://YOURDOMAIN/rest/v10/oauth2/token

With the YOURDOMAIN part replaced with the domain name/IP of your SugarCRM installation.

The Data to be POSTed would be something like this:

{

"grant_type":"password",

"client_id":"sugar",

"client_secret":"",

"username":"MYUSERNAME",

"password":"MYPASSWORD",

"platform":"base"

}

With MYUSERNAME and MYPASSWORD replaced with a valid user/pass defined on your SugarCRM system.

Here is a screenshot of the Web Service module configuration screen:

229

When this module is ran SugarCRM wil return data that will be saved into Result Variables. The

OAuth2 access token will be saved in $RV[access_token]

This $RV[access_token] can then by used in subsequent modules that call other SugarCRM REST API

functions to add/modify the various SugarCRM items (Accounts, Contacts, Leads, Tasks, Notes,

Calls, Bugs, Cases etc.)

To add a new CALL object into SugarCRM a POST would be made to his https address:

https://YOURDOMAIN/rest/v10/calls

With the following data:

{

"name":"New VoiceGuide IVR call",

"description":"VoiceGuide IVR system received a new call",

"assigned_user_name":"Assigned User Name",

"contact_name":"Some Contact Name",

"contact_phone":"5551112222",

"contact_email":"support@voiceguide.com"

}

And the OAuth2 token would be set in the Headers options like this:

oauth-token: $RV[access_token]

Here are the screenshots showing module configuration:

230

231

Similar approach is used when creating new Accounts, Contacts, Leads, Tasks, Notes, Bugs, Cases

etc.

Sample scripts showing creation/addition of the various SugarCRM objects can be found in

VoiceGuide's \Scripts\CRM\ directory.

232

Introduction

VoiceGuide v7 supports any MRCPv2 compliant speech recognition engine.

Speech Recognition is supported when any current Dialogic card is used - except the low end

D/4PCIUF. Speech Recognition is also supported on HMP3.0 VoIP systems.

Please contact sales@voiceguide.com to discuss your Speech Recognition requirements.

Step 1 : Install the speech recognition engine recommended by VoiceGuide.

It is recommended that the Speech Recognition engine be installed on a separate server. Speech

Recognition engines have high resource and CPU requirements and the high CPU load can degrade

overall IVR performance if the Speech Recognition engine is installed on the same system.

Installing LumenVox

Step 2 : Configure Dialogic cards

If using Analog Dialogic cards then a special "CSP Enabled" Firmware file will need to be selected.

Go the Dialogic Configuration Manager, bring up the properties page for the analog card and on the

Misc tab select the following Firmware file:

D/41JCT : d41jcsp.fwl

D/120JCT : d120csp.fwl

Similarly, when using the Dialogic JCT series T1 and E1 cards the "CSP Enabled" Firmware needs to

be selected in the Dialogic Configuration Manager. Further changes in dxxx resource specification in

Config.xml file also need to be made when using T1 and E1 JCT cards. Please consult

support@voiceguide.com when deploying Speech Recognition on T1 or E1 JCT family cards.

No special settings are needed for the DMV cards.

Step 3 : Configure VoiceGuide

An mrcp.xml configuration file needs to be placed in VoiceGuide's \conf\ subdirectory.

A sample mrcp config file is placed in the \conf\ subdirectory on installation. It is called

"sample_mrcp.xml" and needs to be renamed to mrcp.xml and its entries updated with the correct

IP addresses. See comments in the file.

Step 4 : Test with Provided Sample Scripts

Some sample scripts have been provided as starting point. They can be downloaded from the

Example Scripts section of the website.

mailto:support@voiceguide.com

233

Step 5 : Create Your Own Grammars

Speech recognition is right now enabled within VoiceGuide's Play modules only. To have VoiceGuide

recognize speech during a play, a grammar associated with this play module must be defined. A

grammar is defined by creating a text file which contains the grammar for the particular play

module, and placing this file in the same directory where the script is located. The filename can be:

srgs_ModuleTitle.gram

srgs_ModuleTitle_PortNumber.gram

srgs_ModuleTitle.txt

srgs_ModuleTitle_PortNumber.txt

The ModuleTitle identifies for which play module the grammar file is for and the PortNumber can also

be used to specify that this grammar should be used by this particular port only. The grammar files'

contents are read in when the Play module starts. This approach allows user to dynamically update

grammars as required. The order in which VoiceGuide searches for the grammar files is as listed

above.

Step 5 : Modify Your Own Scripts to Handle Speech Recognition Responses

When VoiceGuide receives the response from the Speech Recognition Engine it will create the

following Result Variables

$RV[ModuleTitle_ASR_Instance] contains the speech recognition engine's response. This is
also called "Semantic Interpretation"

$RV[ModuleTitle_ASR_Input] Contains the text of the caller said.

$RV[ModuleTitle_ASR_Confidence]
Contains the confidence level. Indicates how confident the
speech recognition engine is that the recognition is correct
range 0-100

VoiceGuide will first see if a path matching the value stored in $RV[ModuleTitle_ASR_Instance] is

found. If the matching path is found then that path is taken.

Next VoiceGuide will first see if a path matching the value stored in $RV[ModuleTitle_ASR_Input] is

found. If the matching path is found then that path is taken.

Otherwise the Success path is taken if some response was returned, and a Fail path is taken if no

response was returned or the response was <nomatch/>

234

Install LumenVox

1.Purchase a LumenVox license through sales@voiceguide.com

2.You will receive an email with login and password which can be used to download LumenVox

components.

3.Start the License manager.

4.Press "Connect" button to connect the license manager to the license server on your machine.

5.Press the "Create Server ID file" button and save the Info.bts file to somewhere you

remember.

6.Press the "Connect to Website button".

7.In the launched LumenVox website go to the Account Information section.

8.Click on the License Upload link - on the right hand side of the Deployments section.

9.Fill out the Computer text box and browse to find the created Info.bts file.

10.Press upload.

11.Click on the License Download link - on the right hand side of the Deployments section where

the License Upload link used to be.

12.Scroll to bottom and press I agree.

13.Soon you will be prompted to download and save the save the license file

14.Save the license file to somewhere you remember.

15.Go to LumenVox License Administrator and click on the "Install License" button

16.Browse to the license file and select it.

17.Your LumenVox license should now be installed. Click on the "View Current licenses" button

to confirm that the license is installed.

18.If you have any problems with the above the copy a save the messages displaying in the Log

Messages window and forward it to LumenVox.

The LumenVox MRCPv2 server by default uses port 5060 to accept incoming speech recognition

requests. This is the same port used by most VoIP/SIP based applications. When running the

LumenVox MRCPv2 server you will need to ensure that no other VoIP/SIP applications are running

on the same server.

Alternatively the port can be changed to one of users choice. The change would need to be made in

LumenVox's mrcp.config file as well as in the VoiceGuide config.xml file.

Additional Languages

If languages other then American English and American English Digits will be used (eg: Australian or

Canadian etc) then the other used languages need to be copied from the C:\Program

Files\LumenVox\Engine\Lang\OtherLanguages directory to the C:\Program

Files\LumenVox\Engine\Lang directory.

Any of the languages located in the Lang directory can then be specified in the SRGS grammars.

Additional Configuration

235

LumenVox MRCPv2 Server does not stream audio into it's speech recognition engine live. Instead, it

buffers it, and sends it all in at once, after it has detected end of speech. The following two settings

are important in regulating the end of speech detection:

1. speech_complete_timeout

speech_complete_timeout determines the length of pause within the speech that will then be

regarded by LumenVox to indicate end of speech. speech_complete_timeout is best thought of as

the maximum length of pauses allowed between words.

Eg: Imagine if a user is reading strings of digits. e.g. a telephone number: "Five-one-two [pause for

a half second] three-one-four-four" is a normal sort of response. speech_complete_timeout controls

how long we will consider pauses versus end of speech. If we set speech_complete_timeout to 700

(which represents 700 milliseconds = 0.7 second) then the engine will accept the half a second

pause in the spoken numbers and recognize the numbers after the pause. But is the we set

speech_complete_timeout to 300 (which represents 300milliseconds = 0.3 second) then the engine

will assume that the half second pause between numbers can be regarded as end of speech, and

only the first three digits will be recognized.

Note that setting speech_complete_timeout to a large value will result in the delay of speech

recognition result returned to VoiceGuide, as LumenVox will wait for that amount of time after

speech actually ends before realizing that speech has actually ended and that the recognition of

what was spoken can begin.

2. end_of_speech_timeout

end_of_speech_timeout is the total amount of time the user can speak for. If end of speech is not

detected by this time, LumenVox will time out.

The LumenVox MRCPv2 configuration file can be found at C:\Program

Files\LumenVox\MRCPv2Server\config\mrcp.config

Here is an extract of the relevant sections of the .config file:

Vendor Specific parameters

choose_model =1

enable_lattice_scoring =1

initial_audio_time =100

wind_back_time =1000

barge_in_timeout =15000

end_of_speech_timeout =10000

snr_sensitivity_lvl =50

236

MRCPv2 Standard parameters

sensitivity_lvl = 0.5

nbest_length =1

confidence_thrsld =0.45

no_input_timeout =20000

dtmf_termination_timeout =5000

recognizer_start_timers =true

recognition_timeout =20000

speech_complete_timeout =800

dtmf_inter_digit_timeout =5000

dtmf_buffer_time =5000

dtmf_term_char =#

save_waveform =false

waveform_url_location =

The MRCPv2 service needs to be restarted after the mrcp.config file is modified.

More information about each of the parameters can be found in LumenVox documentation and

MRCPv2 RFC

http://www.tools.ietf.org/wg/speechsc/draft-ietf-speechsc-mrcpv2

237

Script Logs

Script Logs

VoiceGuide can store a log of what the caller did during the course of the call. The script activity logs

contain information like:

Date & time the call was made and when it completed.

Caller ID details (name and number)

All the numbers entered in the Play, Get Number Sequence and Say Number modules

Filenames of all the recorded messages

How many results were returned by the Database Query module

Evaluate Expression module results

Results of Run Program or Run Script modules

etc.

The logs are saved in 4 different formats:

.vgl
VoiceGuide Log Format - saved as a string of Result
Variables

.csv Comma delimited format

.json JSON document body format

.xml XML document body format

Script Logs can be turned off by specifying Scripts=OFF in VG.IN in section [Log]

Subscripts

Each script which is used during the call will have a log entry created in the script's corresponding

log files. If the script is visited multiple times during a call then a new log entry will be made each

time the script is used. This means that if a subscript is called multiple times during one call, it's call

log will have multiple entries for the same call - with each entry having different 'start_time' and

'end_time' timestamps.

Create your own Call Log

Run Program or Run VBScript modules can be used to create custom Log files. Please refer to Help

file's sections on those modules to see how these modules can be used to append information to a

text file.

CDR Logs

Please see here for more informationm on CDR logs.

238

vgEngine, ktTel, ktTTs Logs

VoiceGuide system internal application logs are saved in VoiceGuide's \log\ subdirectory.

System logs can be turned off by specifying:

VoiceGuide=0

ktTel=0

ktTts=0

NumberLoader=0

in VG.IN in section [Log]

239

Call Detail Records (CDRs)

VoiceGuide v7 will create a CDR for all the calls which arrived or were made by the system.

The CDR logs are automatically saved in VoiceGuide's \cdr\ subdirectory, and are also saved in a

database. There is also an option to save the CDR data to a Syslog.

The call information is stored in the following CDR format:

1.account: An account code designation (string)

2.src: Caller*ID number (string)

3.dst: Destination extension (string)

4.dcontext: Destination context/submenu (string)

5.clid: Caller*ID with text (string)

6.channel: Channel used (string)

7.dstchannel: Destination channel if appropriate (string)

8.lastapp: Last application if appropriate (string)

9.lastdata: Last application data (arguments) (string)

10.start: Start of call (date/time)

11.answer: Answer of call (date/time)

12.hangup: End of call (date/time)

13.duration: Total time in system, in seconds (integer)

14.billsec: Total time call is up, in seconds (integer)

15.disposition: What happened to the call: ANSWERED, NO ANSWER, BUSY (string)

16.amaflags: Billing flags (string)

17.user: User data

The Result Variables defined during the call can be optionally saved in the lastdata field. To enable

saving of $RVS in CDR logs add this to the [Log] section of the VG.INI file:

CDR_LastData_SaveRv=1

Contents of $RV[CDR_amaflags] will be placed in the 16th CDR field.

Contents of $RV[CDR_user] will be placed in the 17th CDR field.

240

Temp Files

VoiceGuide v7 will save temporary files in \temp\ subdirectory.

Rec_Am_X.wav files are made during End Of Answering Machine Message detection.

X is the "LineID" of the line making the call.

There should be no more of these "Rec_Am" files then the number of lines on the system

TTS_X_Y.wav files are created during Text To Speech and contain the actual TTS generated sound

that was played.

X is the "LineID" of the line and Y is the TTS generation counter during the call.

There should be no more of these "TTS" files then the number of lines on the system * max number

of times the TTS is used during the call.

vbs_X_Y.wav files store the VBScript that was ran.

X is the "LineID" of the line and Y is the VBScript module counter during the call.

There should be no more of these "vbs" files then the number of lines on the system * max number

of times the VBScript module is used during the call.

These files will only be created if SaveToFile option has been enabled in section [moduleRunScript]

in VG.INI

js_X_Y.wav files store the Java Script that was ran.

X is the "LineID" of the line and Y is the VBScript module counter during the call.

There should be no more of these "js" files then the number of lines on the system * max number

of times the JavaScript module is used during the call.

These files will only be created if SaveToFile option has been enabled in section [moduleRunScript]

in VG.INI

The older versions of the files are overwritten by newer versions, so there is an upper limit of how

many files can be in TEMP directory, and all the TEMP files store data related to last call on system

made on that line only.

241

Admin_TraceLogAdd

Adds a log entry to VoiceGuide's event trace log.

Syntax

object.Admin_TraceLogAdd iLineId, iLogLevel, sLogInfo

Part Description

object Required. VoiceGuide object

iLineId
Required. Identification number of the line with which this log entry is associated. Set to 0
if not used.

iLogLevel
Required. Compared against VoiceGuide's trace level setting to determine if the log entry
should be printed. Set to 0 for the trace log entry to be always printed.

sLogInfo Required. the information to be printed

Notes

VoiceGuide's trace level is set using VG.INI file, section "TraceLog", entry "TraceLevel"

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Admin_TraceLogAdd 0, 0, "This trace was printed from an external VB Script"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

242

Dialer_MakeCall

Attempts to make a call on one of the available lines. If no lines are available to make the call

immediately then an error will be returned.

This function does not save any call details in the OutDialQue database.

Syntax

object.Dialer_MakeCall sPhoneNumber, sLineSelection, sBridgeAfterDialing

Part Description

object Required. VoiceGuide object

sPhoneNumber Required. The telephone number to be called

sLineSelection

Required. If the outbound call may only be made on particular phone lines then these
lines should be listed in this setting. If left blank then any available lines will be used.
Line IDs may be specified as a comma delimited list of "LineIDs" (eg: 6,7,8) or using

XML notation, (eg: <LineId>2</LineId><LineId>3</LineId>) or specified as a

comma delimited list of the Dialogic line identifiers (eg:dxxxB1C2,dxxxB1C3).

sBridgeAfterDial
ing

Required. Line ID, or name of Dialogic channel to bridge the call with after the number
has been dialed.

sScriptToRunAft
erDialing

Required. Which script is to be started on the line after dialing the number. Leave
blank to have the script currently assigned to the line to be started. If none is

specified then no script will be used.

Returns

Returns the name of the LineID of line on which the call was made see the VoiceGuide'

Remarks

Please see the VoiceGuide's help file's section on the Auto Dialing for more information on the

many ways in which outgoing calls can be scheduled in VoiceGuide.

Example 1

Scenario : Dial number 5551234 and after last digit is dialed bridge with call on current

line. set vg = CreateObject("vgServices.CommandLink")

vg.Dialer_MakeCall "0,5551234", "", "$RV_LINEID", ""

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

243

Dialer_OutDialQueAdd

Adds a new entry to Dialer's OutDialQue database. The call will be made as outgoing lines become

available, and the time before the call is made may depend on how many other entries are currently

loaded in the OutDialQue database. No return information about when the call will be actually made

is provided when this function returns.

If no other entries are in the OutDialQue database and there are outgoing lines available then the

call will be made immediately.

Please not that the parameters I this function have changed from VoiceGuide v6 to VoiceGuide v7.

Syntax v7

object.Dialer_OutDialQueAdd sPhoneNumber, sPhoneNumberPrefix, sActivateTime,

sDayTimeStart, sDayTimeStop, sDaysCallAllowed, sLineSelection, sCampaignName, iPriority,

sOnAnswerLive, sOnAnswerMachine, sFaxToSend, sOnNotAnswered, sOnRetriesExhausted,

iAnswerTimeout, iRetriesLeft, iRetriesDelay, sRV, sCallOptions, sEscalationCalls

Syntax v6

object.Dialer_OutDialQueAdd sPhoneNumber, iActivateTime, iDayTimeStart, iDayTimeStop,

sDaysCallAllowed, sLineSelection, iPriority, sAnnounceMessage, sOnAnswerLive,

sAnswerMachineMsg, sRV, iAnswerTimeout, iCallRetriesLeft, iDelayBetweenRetries,

sOnNotConnected, sOptionsXml, sEscalationCalls

Part Description

object VoiceGuide object

sPhoneNumber Thetelephone number to be called

sPhoneNumber

Prefix
Optional prefix dialed before the telephone number.

ActivateTime

Date and Time when the call should be made.

In v7 the time can be specified as a string in any locally valid date/

time format. This format is recognized worldwide: YYYY-MM-DD HH:NN:SS

AM/PM the AM/PM sign can be omitted if using 24-hout time notation. The

YMMDDHHNN format can also be used.

In v6 the time can be specified as a number in format YMMDDHHNN.

DayTimeStart

Time of the day before which the call to this number should not be

made.

In v7 the time can be specified as a string in any locally valid date/

time format. This format is recognized worldwide: HH:NN:SS AM/PM the

AM/PM sign can be omitted if using 24-hout time notation. The HHNN

format can also be used.

In v6 the time can be specified as a number in format HHNN. eg: 8am

would be specified as the number 800. To allow this telephone number

to be dialed from midnight onwards set to 0

DayTimeStop Time of the day after which the call to this number should not be made.

244

In v7 the time can be specified as a string in any locally valid date/

time format. This format is recognized worldwide: HH:NN:SS AM/PM the

AM/PM sign can be omitted if using 24-hour time notation. The HHNN

format can also be used.

In v6 the time can be specified as a number in format HHNN. eg: 9pm

would be specified as the number 2100. To allow this telephone number

to be dialed at any time of day set to 0

sDaysCallAll

owed

Days of the week when the call can be made. Specify each day using the

first two characters of that day eg: to call on weekdays only specify

"MoTuWeThFr". If not used (ie: can call on all days) set to empty

string ""

sLineSelecti

on

If the outbound call may only be made on particular phone lines then

these lines should be listed in this setting. Line IDs may be specified

as a comma delimited list of "LineIDs" (eg: 6,7,8) or using XML

notation, (eg: <LineId>2</LineId><LineId>3</LineId>)or

specified as a comma delimited list of the Dialogic line

identifiers (eg: dxxxB1C2,dxxxB1C3). If left blank then any

available lines will be used.

sCampaignNam

e

Campaign name associated with this call. Used for users own

categorizing of calls. Can be left as an empty string.

iPriority

At what priority level the calls should be made. A lower number

indicates a higher priority. ie: 1 is the highest priority, then 2,

then 3 ... etc. Number of priority levels is unlimited.

sOnAnswerLiv

e
VoiceGuide script to run when the call is answered by a real person.

sOnAnswerMac

hine

Sound file (or VoiceGuide script) to be played if the call is answered

by an answering machine. The sound file will be played after the

answering machine's welcome message finishes. If not used set to empty

string ""

sFaxToSend

.PDF/.TIF/.TIFF file to send, or VoiceGuide script to be started

immediately after dialing. If this setting specified then the

sOnAnswerLive and sOnAnswerMachine are effectively ignored, as when

sending fax the fax calling tone has to be sent immediately after

dialing. If not used set to empty string ""

sOnNotAnswer

ed

.EXE/.COM/.BAT or .VBS (VBScript) to run when the call has not been

answered. If not used set to empty string ""

sOnRetriesEx

hausted

.EXE/.COM/.BAT or .VBS (VBScript) to run when the call has not been

answered and there are no more retries left. If not used set to empty

string ""

iAnswerTimeo

ut

How many seconds will the Dialer wait for the call to be answered.

Default value of 60 will be used if this entry is set to 0

iCallRetries

Left

How many more times will the Dialer attempt to call this number if the

next call is unsuccessful. To only make one call attempt set to 0

iRetriesDela

y

How many minutes will the Dialer wait before attempting to call again.

If not used set to 0

sRV
Result Variables which will be available to the VoiceGuide script used

on this call. If not used set to empty string ""

sCallOptions XML formatted options string. If not used set to empty string ""

sEscalationC

alls

Can be used to specify multiple escalations levels. XML format is used

to specify the escalation calls. Please see the VoiceGuide's help

file's section on the 'Out Dial' file for details on the XML format

used to specify call details. If not used then set to empty string "".

245

Notes

Version 7 Examples:

Example 1

Straightforward example.

set vg = CreateObject("vgServices.CommandLink")

vg.Dialer_OutDialQueAdd "ext1002@10.1.1.4", "", "2009-11-28 9:00:00 AM", "9:00 AM",

"5:00 PM", "", "", "BookingConfirmCampaign", 1, "c:\ConfirmBooking.vgs", "c:

\CallBackDetails.wav", "", "c:\ifNotAnswered.vbs", "c:\ifRetriesExhausted.vbs", 90, 2,

30, "[CustomerID]{44563}", "", ""

set vg = Nothing

Version 6 Examples:

Example 1

set vg = CreateObject("VoiceGuide.CommandLink")

vg.Dialer_OutDialQueAdd "0,5551234", 0, 0, 0, "", "", 1, "c:\sendinfo\announce.wav",

"c:\sendinfo\InfoMenu.vgs", "c:\sendinfo\CallBackDetails.wav", "", 90, 2, 5, "", "",

""

set vg = Nothing

Example 2

Note: Cstr() function needs to be used around a variable which needs to be passed in

as a string and which is composed of numbers. If CStr() is not used VBScript will try

to pass that variable as a number instead of as a string, which will generate an

error.

Result Variables which will be available to scripts ran when the call is made are

specified as well.

set vg = CreateObject("VoiceGuide.CommandLink")

sTelNumber = "5551234"

vg.Dialer_OutDialQueAdd CStr(sTelNumber), 0, 0, 0, "", "", 1, "c:

\sendinfo\announce.wav", "c:\sendinfo\InfoMenu.vgs", "c:

\sendinfo\CallBackDetails.wav", "[CustomerID]{44563}", 90, 2, 5, "", "", ""

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

246

Bridge_Connect

Connects two calls together, allowing callers on the two lines to speak to each other.

Syntax

sResult = object.Bridge_Connect(iLineId1, iLineId2)

or

sResult = object.Bridge_Connect(sChName1, sChName2)

Part Description

object Required. VoiceGuide object

iLineId1 Required. Identification number of the first line

iLineId2 Required. Identification number of the second line

sChName1 Required. The name of the first Dialogic channel.

sChName2 Required. The name of the second Dialogic channel.

sResult
Optional. Empty string if function completed OK, otherwise it will contain the error
description.

Notes

This command needs to be issued only once to connect two calls together. It does not matter which

of the lines issues the call - both lines will be able to hear and speak to each other.

Examples

Example 1: Using 'Line ID' identifiers

set vg = CreateObject("vgServices.CommandLink")

vg.Bridge_Connect $RV_LINEID, iSecondLineId

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

Example 2: Using Dialogic channel descriptors

set vg = CreateObject("vgServices.CommandLink")

vg.Bridge_Connect "dxxxB1T3", "dxxxB4T1"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

Example 3: Using Dialogic channel descriptors

set vg = CreateObject("vgServices.CommandLink")

vg.Bridge_Connect("dtiB1T21", "dtiB2T13")

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

247

Bridge_Disconnect

Disconnects the two lines. Callers on the two lines will no longer be able to speak to each other.

Syntax

sResult = object.Bridge_Disconnect(iLineId1, iLineId2)

or

sResult = object.Bridge_Disconnect(sChName1, sChName2)

Part Description

object Required. VoiceGuide object

iLineId1 Required. Identification number of the first line

iLineId2 Required. Identification number of the second line

sChName1 Required. The name of the first Dialogic channel.

sChName2 Required. The name of the second Dialogic channel.

sResult
Optional. Empty string if function completed OK, otherwise it will contain the error
description.

Notes

This command needs to be issued only once to disconnect the two calls. It does not matter which of

the lines issues the call - both lines will not be able to hear and speak to each other any more.

Examples

Example 1: Using line ID numbers

set vg = CreateObject("vgServices.CommandLink")

vg.Bridge_Disconnect $RV_LINEID, iSecondLineId

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

Example 2: Using Dialogic channel descriptors (Analog cards)

set vg = CreateObject("vgServices.CommandLink")

vg.Bridge_Disconnect "dxxxB1T3", "dxxxB4T1"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

Example 3: Using Dialogic channel descriptors (Digital cards)

set vg = CreateObject("vgServices.CommandLink")

vg.Bridge_Disconnect("dtiB1T21", "dtiB2T13")

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

248

Line_Hangup

End the call on the specified line.

Syntax

object.Line_Hangup iLineId

Part Description

object Required. VoiceGuide object

iLineId
Required. Identification number of the line. If set to 0 then the first device controlled by
VoiceGuide will have it's call terminated. If set to -1 al devices controlled by VoiceGuide
will have the calls terminated.

Notes

There must be an incoming call on the line.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Line_Hangup $RV_LINEID

set vg = Nothing

249

Line_Pickup

Answer an incoming call and run VoiceGuide script.

Syntax

object.Line_Pickup iLineId, sVgScriptToRun

Part Description

object Required. VoiceGuide object

iLineId
Required. Identification number of the line. If set to 0 then the first device controlled by
VoiceGuide will answer the call.

sVgScriptToRun Required. VG Script to run after answering call

Notes

There must be an incoming call on the line.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Line_Pickup $RV_LINEID, "C:\Scripts\CallRec\RecCall1.vgs"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

250

Play_Start

Plays a sound file on the specified line.

Syntax

object.Play_Start(iLineId, sSoundFiles)

Part Description

object VoiceGuide object

iLineId Identification number of the line

sSoundFiles The sound file to be played. Multiple sound files can be specified, separated by commas.

Notes

There must be an active call on the line. If any other sound files are being played or recorded on

the line at the time they are stopped and the new file is played.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Play_Start $RV_LINEID, "c:\confirm.wav"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

251

Play_Stop

Stop playing a sound file on the specified line.

Syntax

object.Play_Stop iLineId

Part Description

object Required. VoiceGuide object

iLineId Required. Identification number of the line

Notes

There must be an active call on the line.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Play_Stop $RV_LINEID

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

252

Record_Stop

Stop recording the sound file on the specified line.

Syntax

object.Record_Stop iLineId

Part Description

object VoiceGuide object

iLineId Identification number of the line

Notes

There must be an active call on the line.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Record_Stop $RV_LINEID

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

253

Record_Start

Start Recording the sound on the specified line.

Syntax

object.Record_Start(iLineId, sSoundFile, iPlayBeep, sOptionsXml)

Part Description

object VoiceGuide object

iLineId Identification number of the line

sSoundFile The filename of the sound file to be recorded

iPlayBeep 1 if a 'beep' is to be played before recording, 0 is no 'beep' is to be played

sOptionsXml Record options

Notes

There must be an active call on the line. If any other sound files are being played or recorded on

the line at the time they are stopped and the new file is recorded.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Record_Start $RV_LINEID, "c:\newfile.wav", 1, ""

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

254

Record_2Lines_Start

Start Recording the sound from two lines into the specified line. Usually used to record the two

sides on conversation on a conferenced call.

Available in VoiceGuide v7.x only.

To use this function in VoiceGuide v6 please contact sales@voiceguide.com

Syntax

object.Record_2Lines_Start(iLineIdRec, iLineId1, iLineId2, sSoundFile, sOptionsXml)

Part Description

object VoiceGuide object

iLineIdRec LineID of the line handling the recording process.

iLineId1 Identification number of the first line to be recorded

iLineId2 Identification number of the second line to be recorded

sSoundFile The filename of the sound file to be recorded

sOptionsXml Record options

Notes

There must be an active call on both lines. If any other sound files are being played or recorded on

either line at the time they are stopped and the new file is recorded.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Record_2Lines_Start $RV_LINEID, $RV_LINEID, $RV[Transfer_2ndLeg], "c:\newfile.wav", ""

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

255

Run_ResultReturn

Returns information from the called Program or script back to VoiceGuide - indicating what path

VoiceGuide should take next from the "Run Program" or "Run VBScript" modules.

Syntax

object.Run_ResultReturn iLineId, sResult

Part Description

object VoiceGuide object

iLineId Identification number of the line

sResult
Result returned to VoiceGuide. Can be "success", "fail", "true",

"false" or a string of Result Variables. If set to empty string then

the Fail path will be taken

Notes

Used to return results if VoiceGuide is currently awaiting results from a called

Program or Script.

If a list of $RVs is returned then a Success path will be taken.

When used in the Run VBScript modules: the jump to next module is taken immediately

when Run_ResultReturn is called, so Run_ResultReturn usually should be the last

function in the script (before 'set vg = Nothing')

Example 1

set vg = CreateObject("vgServices.CommandLink")

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

Example 2

set vg = CreateObject("vgServices.CommandLink")

vg.Run_ResultReturn $RV_LINEID, "[MarketDow]{9,321}[MarketNasdaq]{1,702}[MarketSP500]

{990}"

set vg = Nothing

256

RvGet

Returns value of the specified Result Variable.

Syntax

sValue = object.RvGet(iLineId, sRv)

Part Description

object VoiceGuide object

iLineId Identification number of the line

sRv

Result Variable who's value is to be returned. The leading dollar sign can be ommited. eg.
in case of $RV[GetCardDetails] just the RV[GetCardDetails] can be specified, and in

case of a system RV like $RV_CALLLENGTH just the RV_CALLLENGTH can be specified.

Omiting the dollar sign is necessary if RvGet() is used from within VoiceGuide, as any fully
specified RVs will be replaced with their value before the script is ran.

sValue
Value of the specified Result Variable. If this Result Variable is not currently defined on
the line then an empty string is returned.

Notes

Result Variables are reset at the beginning of a new call. Hence they are available for querying after

the call has finished, but before a new call has begun on the same line.

RvGet() should only really be used from VoiceGuide's VB Script if that VB script polls for a value of a

particular Result Variable in a loop. If the value of the Result Variable is not expected to change

during the running of the script then the actual Result Variable should be used directly in the script,

without the need of a RvGet function.

Example 1

Running from an external application.

set vg = CreateObject("vgServices.CommandLink")

'see how long the call on line who's LineID is 6 has been going on for:

sReturnValue = vg.RvGet(6, "$RV_CALLLENGTH")

set vg = Nothing

MsgBox sReturnValue

Example 2

Running from an external application.

set vg = CreateObject("vgServices.CommandLink")

'get the RV [GetCardDetails] defined on LineID 6:

sReturnValue = vg.RvGet(6, "$RV[GetCardDetails]")

set vg = Nothing

MsgBox sReturnValue

257

Example 3

Running from VoiceGuide's VB Script module. Note that the $ has been omitted in the $RV, as if it is

included then the $RV will be replaced with value of $RV[GetCardDetails] on the current line, before

the VBScript is ran.

Example below will read $RV_CALLLENGTH from a call on another line:

set vg = CreateObject("vgServices.CommandLink")

sReturnValue = vg.RvGet($RV[SecondLineId], "RV_CALLLENGTH")

vg.Run_ResultReturn $RV_LINEID, "[OtherLineCallLength]{" & sReturnValue & "}"

set vg = Nothing

Example 4

Running from VoiceGuide's VB Script module. Note that the $ has been omitted in the $RV, as if it is

included then the $RV will be replaced with value of $RV[GetCardDetails] on the current line, before

the VBScript is ran.

Example below will read $RV[GetCardDetails] from a call on another line:

set vg = CreateObject("vgServices.CommandLink")

sReturnValue = vg.RvGet($RV[SecondLineId] "RV[GetCardDetails]")

vg.Run_ResultReturn $RV_LINEID, "[OtherLineCardDetails]{" & sReturnValue & "}"

set vg = Nothing

258

RvGet_All

Returns all the Result Variables current for the specified line.

Syntax

sResult = object.RvGet_All(iLineId)

Part Description

object VoiceGuide object

iLineId Identification number of the line

sResult Result Variables currently defined for the selected line.

Notes

Result Variables are reset at the beginning of a new call. Hence they are available for querying after

the call has finished, but before a new call has begun on the same line.

Example

set vg = CreateObject("vgServices.CommandLink")

sReturnedData = vg.RvGet_All($RV_LINEID)

vg.Run_ResultReturn $RV_LINEID, sReturnedData

set vg = Nothing

259

RvGet_AllXml

Returns all the Result Variables current for the specified line in XML-ish format

Syntax

sResult = object.RvGet_AllXml(iLineId)

Part Description

object VoiceGuide object

iLineId Identification number of the line

sResult Result Variables currently defined for the selected line. Returned on XML-ish format

Notes

The returned data defines each variable in XML format, but no XML headers or footers are supplied.

Result Variables are reset at the beginning of a new call. Hence they are available for querying after

the call has finished, but before a new call has begun on the same line.

Example

set vg = CreateObject("vgServices.CommandLink")

'see what Result Varaibles are currently defined on current line

sReturnValue = vg.RvGet_AllXml($RV_LINEID)

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

MsgBox sReturnValue

260

RvSet

Sets the value of a Result Variable. If the Result Variable does not exit then it is created.

Syntax

object.RvSet iLineId, sRv, vValue

Part Description

object VoiceGuide object

iLineId Identification number of the line

sRv Name of the Result Variable

vValue New value of the Result Variable

Notes

Result Variables are reset at the beginning of a new call.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.RvSet $RV_LINEID, "ThisCallersRating", "medium"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

261

RvSet_RvList

Sets a number of Result Variables. If any of the the Result Variables do not exit then they are

created.

Syntax

object.RvSet_RvList iLineId, sRvList

Part Description

object VoiceGuide object

iLineId Identification number of the line

sRvList
List of Result Variables and their values. Each RV-Value pair is in format [Name]{Value}

a number of RV-Value pairs can be specified one after another.

Notes

Result Variables are reset at the beginning of a new call.

Example

set vg = CreateObject("vgServices.CommandLink")

'sets two Result variables - which will be able to be accessed

'later as $RV[CallersRating] and $RV[CallersPreference]

vg.RvSet_RvList $RV_LINEID, "[CallersRating]{medium}[CallersPreference]{blue}"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

262

Script_Gosub

Call a VoiceGuide subscript, specifying the script filename and start module. Specify which script and

module should be ran once the subscript returns.

Syntax

object.Script_Gosub iLineId, sDestScript, sDestModule, sRvList, sReturnScript,

sReturnModule

Part Description

object VoiceGuide object

iLineId Identification number of the line

sDestScript
The filename of the VoiceGuide script where the subscript is located. If the subscript is in

the same VoiceGuide script as the calling module then this entry can be left blank.

sDestModule Name of the starting module.

sRvList
List of Result Variables and their values. Each RV-Value pair is in format [Name]{Value}

a number of RV-Value pairs can be specified one after another.

sReturnScript

The filename of the VoiceGuide script where the system should return to after finishing

the subscript. If the subscript is in the same VoiceGuide script as the calling module then

this entry can be left blank.

sReturnModule Name of the return module.

Notes

If the module names are blank then the default starting modules in the script are used.

When used in the Run VBScript modules: the jump to next module is made immediately when

Script_Gosub is called, so Script_Gosub usually should be the last function in the script (before 'set

vg = Nothing')

Example 1

set vg = CreateObject("vgServices.CommandLink")

'Gosub to a new scriopt and return to module VmMmMenuPlay in the current script

vg.Script_Gosub $RV_LINEID, "vmAdmin.vgs", "", "", "", ""

set vg = Nothing

Example 2

set vg = CreateObject("vgServices.CommandLink")

'Gosub to a new scriopt and return to module VmMmMenuPlay in the current script

vg.Script_Gosub $RV_LINEID, "vmAdmin.vgs", "VmAdminWelcMsgMenuPlay", "", "",

"VmMmMenuPlay"

set vg = Nothing

263

Script_Goto

Jump to new VoiceGuide script and/or module.

Syntax

object.Script_Goto iLineId, sDestScript, sDestModule, sRvList

Part Description

object VoiceGuide object

iLineId Identification number of the line

sDestScript

The filename of the VoiceGuide script where the module subscript is located. If the

subscript is in the same VoiceGuide script as the calling module then this entry can be left

blank.

sDestModule Name of the starting module. If left blank then the script's default starting module is used.

sRvList
List of Result Variables and their values. Each RV-Value pair is in format [Name]{Value}

a number of RV-Value pairs can be specified one after another.

Notes

If the module names are blank then the default starting modules in the script are used.

When used in the Run VBScript modules: the jump to next module is made immediately when

Script_Goto is called, so Script_Goto usually should be the last function in the script (before 'set vg

= Nothing')

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Script_Goto $RV_LINEID, "GetPayment.vgs", "", ""

set vg = Nothing

264

Script_Return

Returns control of the call to the calling script.

Syntax

object.Script_Return iLineId, sRvList

Part Description

object VoiceGuide object

iLineId Identification number of the line

sRvList
List of Result Variables and their values. Each RV-Value pair is in format [Name]{Value}

a number of RV-Value pairs can be specified one after another.

Notes

Effectively pops the return destination script/module of the call stack and start execution at that

script/module.

When used in the Run VBScript modules: the jump to next module is made immediately when

Script_Return is called, so Script_Return usually should be the last function in the script (before 'set

vg = Nothing')

Example 1

set vg = CreateObject("vgServices.CommandLink")

vg.Script_Return $RV_LINEID, ""

set vg = Nothing

Example 2

set vg = CreateObject("vgServices.CommandLink")

vg.Script_Return $RV_LINEID, "[PersonalDataVerified]{True}"

set vg = Nothing

265

Serial_Tx

Transmits data over a serial port.

Syntax

object.Serial_Tx iSerialPortNumber, sTx

Part Description

object Required. VoiceGuide object

iSerialPortNumbe
r

Required. Serial port number.

sTx Required. String to be sent on the Serial port.

Notes

Default parameters for the serial connection can be set in VG.INI file, using section [Serial]:

[Serial]

CommPort=1

Handshaking=0

InBufferSize=1024

InputMode=1

NullDiscard=False

ParityReplace=?

RThreshold=1

RTSEnable=False

Settings=9600,N,8,1

Calls to Serial_Tx function will then send send the specified data over the Serial port. The Serial

port will be opened during the sending of data and closed immediately afterwards.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Serial_Tx 1, "This is a test sent from VoiceGuide."

set vg = Nothing

266

Vm_Event

Indicate an event has occurred affecting a particular voicemail box, or an action should be taken

affecting a particular voicemail box.

Syntax

object.Vm_Event iLineId, sEvent, sVmbId, sParam1, sParam2, sParam3

Part Description

object Required. VoiceGuide object

iLineId Required. Identification number of the line

sEvent
Required. Event/Action type. Allowed values are: FORWARD, MSG_NEW, MSG_NONEWMSGS,

MSG_NOSAVEDMSGS, LOGIN, LOGOUT

sVmbId Required. The ID of the Voicemail box to which the Event/Action applies.

sParam1 Required. Event/Action specific parameter. Set to blank if not used.

sParam2 Required. Event/Action specific parameter. Set to blank if not used.

sParam3 Required. Event/Action specific parameter. Set to blank if not used.

For examples of use please see the VoiceGuide Scripted Voicemail System script files.

267

Vm_VmbConfig_Get

Retrieves a property value for a particular voicemail box.

Syntax

sCurrentValue = object.Vm_VmbConfig_Get(sVmbId, sTag)

Part Description

object Required. VoiceGuide object

sVmbId Required. The ID of the Voicemail box who's property is to be retrieved.

sTag Required. The name of the property to be retrieved.

sCurrentValue Required. The current value of the property.

Notes

Returns the information stored for the specified property. The actual information returned will be

the contents in the VmBoxList.xml file between <sTag> and </sTag> for the selected Voicemail Box.

Example

set vg = CreateObject("vgServices.CommandLink")

sPin = vg.Vm_VmbConfig_Get("0001" "Pin")

vg.Run_ResultReturn $RV_LINEID, "[ThisUserPin]{" & sPin & "}"

set vg = Nothing

268

Vm_VmbConfig_Set

Set a property for a particular voicemail box.

Syntax

object.Vm_VmbConfig_Set sVmbId, sTag, sNewValue

Part Description

object Required. VoiceGuide object

sVmbId Required. The ID of the Voicemail box who's property is to be set.

sTag Required. The title of the property to be set.

sNewValue Required. The new property value.

Notes

Sets the current value of the specified property. The new Value will be inserted in the VmBoxList.xml

file between <sTag> and </sTag> for the selected Voicemail Box.

Example

set vg = CreateObject("vgServices.CommandLink")

vg.Vm_VmbConfig_Set "0001", "Pin", "1234"

vg.Run_ResultReturn $RV_LINEID, "Success"

set vg = Nothing

269

Inband Signaling

Many PBXs and Switches can send information about the call using Inband Signaling. This

information may contain CallerID, number dialed, extension from which the call was transferred,

reason for the transfer etc. Different PBXs and Switches support provision of different information

via Inband Signaling.

VoiceGuide can be configured to detect Inband Signaling sent by the PBX at the beginning of the

call and make this information available to scripts as Result Variables.

Inband Signaling is sent using a series of DTMF tones immediately after the call is answered. It is

only sent to the recipient of the call and it does not matter after how many rings the call is

answered - the signaling tones are sent immediately after call answer.

It is easy to check if Inband Signaling is sent on the line: place an extension headset against your

ear and keep the 'handset on hook' switch depressed so that that handset can accept calls, then

make a call to that extension and when the call arrives lift the hand off the 'handset on hook' switch

- if there is any Inband Signaling sent you will hear it then a quick series of DTMF tones.

(You will not be able to hear the tones usually if you just normally pick up the handset as the

playing of the tones would have finished by the time you raise the handset to your ear)

To capture what tones are being sent on the line just set up a VoiceGuide script whose first module

is a "Get Numbers" type module - that module will then capture the sent digits and what it captures

will be stored in the Log File.

To enable inband signaling detection and interpretation in VoiceGuide an “Inband Signaling

Definition File” needs to be created. This file defines what Inband Signaling VoiceGuide can expect

to receive form the PBX and how it should be interpreted.

Creating an “Inband Signaling Definition File”

Creating an Inband Signaling definition files requires precise knowledge of what PBX will send in

various circumstances.

Inband Signaling detection is only supported in the Enterprise (and Evaluation) version of

VoiceGuide.

An example file is shown below. Comments within the file explain the purpose of the “Pattern” and

“RV” entries.

Pattern=[*][*][*]???????????[*][1-4]

RV=Inband_TOC,4,1,Inband_Calling,5,5,Inband_Called,10,5,Inband_Info,17,1

Pattern=[*][*][*]??????[*][1-4]

RV=Inband_TOC,4,1,Inband_Calling,5,5,Inband_Called,10,0,Inband_Info,11,1

When using the file above the following Result Variables will be available to the

script:

270

$RV[Inband_TOC] 4the character sent

$RV

[Inband_Calling]

5 characters starting from position 5

$RV[Inband_Called] In case of forwarded call the 5 characters starting from position 10,

or an empty string case of a direct call

$RV[Inband_Info] Last character of the data string.

The “Pattern” entries are defined according to the rules Visual Basic for Applications

LIKE operator pattern definition, major part of which is quoted below:

Selecting which “Inband Signaling Definition File” to use

To indicate that a particular “Inband Signaling Definition File” is to be used by the system

the full path to the file must the specified in the VG.INI file, section [PBX], entry

InbandSignalConfig. Eg:

[PBX]

InbandSignalConfig=InbandSignaling_SiemensHiPath3000_v1.2.txt

Inband Signaling Call Answering and Timings

If Inband Signaling is defined, VoiceGuide will wait for up to 2 seconds

for DTMF tones to arrive. Maximum time between successive DTMF tones is 0.5

seconds. Once DTMF signaling stops VoiceGuide will perform the pattern

matching and start running the script

If Inband Signaling does not arrive within 2 seconds of answering the call

VoiceGuide will start running the script and the Result variables which

would have been defined as a result of any pattern matches will be left

undefined.

The 2 sec timeouts were found to be suitable for most systems, but it can be changed

using the settings in VG.INI file. To change that setting please see the [PBX]

section, entry InbandSignalWait.

Please contact support@voiceguide.com if an interdigit timeout other then

0.5 seconds is needed on your system

Signal Patterns Definition

The pattern-matching features allow you to use wildcard characters, character lists, or

character ranges, in any combination, to match strings. The following table shows the

mailto:support@voiceguide.com

271

characters allowed in pattern and what they match:

Characters in

pattern

Matches in string

? Any single character.

* Zero or more characters.

Any single digit (0–9).

[charlist] Any single character in charlist.

[!charlist] Any single character not in charlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to

match any single character in string and can include almost any character code, including

digits.

Note To match the special characters left bracket ([), question mark (?), number sign

(#), and asterisk (*), enclose them in brackets. The right bracket (]) can't be used within

a group to match itself, but it can be used outside a group as an individual character.

By using a hyphen (–) to separate the upper and lower bounds of the range, charlist can

specify a range of characters. For example, [A-Z] results in a match if the corresponding

character position in string contains any uppercase letters in the range A–Z. Multiple

ranges are included within the brackets without delimiters.

Other important rules for pattern matching include the following:

An exclamation point (!) at the beginning of charlist means that a match is made if any

character except the characters in charlist is found in string. When used outside

brackets, the exclamation point matches itself.

A hyphen (–) can appear either at the beginning (after an exclamation point if one is

used) or at the end of charlist to match itself. In any other location, the hyphen is

used to identify a range of characters.

When a range of characters is specified, they must appear in ascending sort order

(from lowest to highest). [A-Z] is a valid pattern, but [Z-A] is not.

The character sequence [] is considered a zero-length string ("").

Signal Patterns Examples

In the example file shown above the pattern:

[*][*][*]???????????[*][1-4]

272

specifies a string which has a total length of 16 characters, beginning with “***” followed

by 11 characters, followed by another “*” and then followed by a digit between 1 and 4.

The pattern of:

[*][*][*]??????[*][1-4]

specifies a string which has a total length of 11 characters, beginning with “***” followed

by 6 characters, followed by another “*” and then followed by a digit between 1 and 4.

In the pattern definition we need to enclose “*” characters in square brackets, otherwise

they would be interpreted as a special “Zero or more characters.” Indicator. The section

Signal Patterns Definitions above has more information on how the various patterns can

be defined.

273

Copyright & Disclaimer

VoiceGuide is Copyrighted by Katalina Technologies Pty. Ltd.

VoiceGuide is a Registered Trademark owned by Katalina Technologies Pty. Ltd.

The software is provided AS IS without warranty of any kind, whether express or implied, including,

without limitation, warranties of merchantability or fitness for a particular purpose. The use of this

software is entirely at the users own risk, and under the users own responsibility. Katalina

Technologies shall have no liability to customer or any third party for any claim, loss or damage of

any kind whether direct or indirect, including but not limited to lost profits, punitive, incidental,

consequential or special damages, arising out of or in connection with the use or performance of

the software and accompanying documentation.

An unlicensed evaluationcopy of VoiceGuide may be used for evaluation purposes only. This covers

every application component of VoiceGuide including but not limited to VoiceGuide Engine,

VoiceGuide Script Designer and VoiceGuide Dialer.

No part of the VoiceGuide distribution package may be modified or distributed separately without

express permission of Katalina Technologies Pty. Ltd.

Parties found breaching above conditions will be prosecuted to the maximum extent possible under

the law.

274

Index

A
Admin_TraceLogAdd 241

C
Call Finish 91

Call Start 89

Copyright & Disclaimer 273

D
Database Query 119

Dialer_OutDialAdd 243

E
Evaluate Expression 166

G
Get Numbers 109

Graphical Script Design Environment 75

H
Hangup Call 185

I
Inband Signaling 269

Introduction 74, 192

L
Loading Numbers to Call 205

M
Module Types 77

Multilanguage Systems 93

O
ODBC Data Sources 36

P
Paths 78

Play 101

Play_Start 250

Play_Stop 251

Protected Scripts 95

R
Record 105

Record_Start 253

Record_Stop 252

Registering VoiceGuide 69

Result Variables 82

Run Program 126

Run VB Script 131

Run_ResultReturn 255

RvGet 256

RvGetAll 258

RvGetAllXml 259

RvSet 260

RvSet_RvList 261

S
Say Numbers 114

Script_Gosub 262

Script_Goto 263

Script_Return 264

Send Email 116

Send Pager Message 183

Send Phone Message 180

Sound f iles 96

System Requirements 3

T
Time Sw itch 156

Transfer Call 158

U
Unique System Identif ier 71

V
Vm_Forw ardMsg 266

Voicemail Menus 200

Voicemail System Manager 195

	1 1. Introduction
	1.1 Welcome To VoiceGuide
	1.2 Which version to use

	2 2. Configuration
	2.1 System Requirements
	2.2 Installing v7.x - VoIP (SIP) / HMP
	2.3 Installing v7.x - Telephone lines/trunks
	2.4 Installing v6.x - Telephone lines/trunks
	2.5 Installing v5.x - TAPI devices
	2.6 Installing v5.x - CAPI devices
	2.7 Text To Speech
	2.8 Call Transfers and Conferencing
	2.9 Databases
	2.10 End of Call Detection
	2.11 Distinctive Ring Detection
	2.12 Cisco Call Manager Configuration
	2.13 T1/E1 ISDN Configuration
	2.14 T1/E1 RobbedBit/CAS/R2 Configuration
	2.15 VoIP Line Registration
	2.16 Command Line Options
	2.17 Registering VoiceGuide
	2.18 Unique Identifier

	3 3. Script Design
	3.1 Introduction
	3.2 Graphical Design Environment
	3.3 Module Types
	3.4 Paths
	3.5 Result Variables
	3.6 Call Start
	3.7 Call Finish
	3.8 Multilanguage Systems
	3.9 Protected Scripts
	3.10 Sound files
	3.11 Testing Scripts

	4 4. Modules
	4.1 Play
	4.2 Record
	4.3 Get Numbers
	4.4 Say Numbers
	4.5 Send Email
	4.6 Database Query
	4.7 Run Program
	4.8 Run VB Script
	4.9 Call Web Service
	4.10 Time Switch
	4.11 Transfer Call
	4.12 Evaluate Expression
	4.13 Fax Send and Receive
	4.14 Send Phone Message
	4.15 Send Pager Message
	4.16 Hangup Call

	5 5. Reporting
	5.1 Dashboards
	5.2 REST API
	5.3 Line Status Monitor
	5.4 Automated Report Scheduling

	6 6. Voicemail
	6.1 Introduction
	6.2 Voicemail System Manager
	6.3 Voicemail Menus
	6.4 Message Lamps

	7 7. Outbound Dialing
	7.1 Loading Numbers to Call
	7.2 Detect Call Answer
	7.3 Outbound VoIP calls
	7.4 Predictive Dialers
	7.5 External Database Source (v7)

	8 8. CRM Integration
	8.1 SugarCRM

	9 9. Speech Recognition
	9.1 Introduction
	9.2 Install LumenVox

	10 10. Logs
	10.1 Script Logs
	10.2 Call Detail Records (CDRs)
	10.3 Temp Files

	11 11. COM and WCF Interface
	11.1 Admin_TraceLogAdd
	11.2 Dialer_MakeCall
	11.3 Dialer_OutDialQueAdd
	11.4 Bridge_Connect
	11.5 Bridge_Disconnect
	11.6 Line_Hangup
	11.7 Line_Pickup
	11.8 Play_Start
	11.9 Play_Stop
	11.10 Record_Stop
	11.11 Record_Start
	11.12 Record_2Lines_Start
	11.13 Run_ResultReturn
	11.14 RvGet
	11.15 RvGet_All
	11.16 RvGet_AllXml
	11.17 RvSet
	11.18 RvSet_RvList
	11.19 Script_Gosub
	11.20 Script_Goto
	11.21 Script_Return
	11.22 Serial_Tx
	11.23 Vm_Event
	11.24 Vm_VmbConfig_Get
	11.25 Vm_VmbConfig_Set

	12 12. PBX Inband Signaling
	12.1 Inband Signaling

	13 Legal Information
	13.1 Copyright & Disclaimer

